J. Nucl. Phy. Mat. Rad. A

Understanding the Basics of Final Unification With Three Gravitational Constants Associated With Nuclear, Electromagnetic and Gravitational Interactions

U. V. S. Seshavatharam And S. Lakshminarayana

  • Download PDF
  • DOI Number
    https://doi.org/10.15415/jnp.2017.42031
KEYWORDS

Final unification; Gravitational constants associated with strong and electromagnetic interactions.

PUBLISHED DATE February 06, 2017
PUBLISHER This article is published with open access at www.chitkara.edu. in/publications
ABSTRACT

With three fundamental gravitational constants assumed to be associated with strong interaction, electromagnetic interaction and gravity, we review the basics of final unification.

Page(s) 355-373
URL http://dspace.chitkara.edu.in/jspui/bitstream/1/827/4/42031_JNP_Seshavatharam.pdf
ISSN 2321-8649
DOI https://doi.org/10.15415/jnp.2017.42031
REFERENCES
  • Juan M. Maldacena. Gravity, Particle Physics and Their Unification. Int.J.Mod. Phys. A15S1 840–852 (2000)
  • Roberto Onofrio. Proton radius puzzle and quantum gravity at the Fermi scale. EPL 104, 20002 (2013) https://doi.org/10.1209/0295-5075/104/20002
  • Salam A, Sivaram C. Strong Gravity Approach to QCD and Confinement. Mod. Phys. Lett., 1993, v. A8(4), 321–326. (1983)
  • S. Schlamm inger and R.D. Newman. Recent measurements of the gravitational constant as a function of time. Phys. Rev. D 91, 121101 (2015) https://doi.org/10.1103/PhysRevD.91.121101
  • U. V. S. Seshavatharam and S. Lakshminarayana. Applications of gravitational model of possible final unification in both large and small scale physics. Prespacetime journal, Vol 7, issue2, 405–421 (2016).
  • K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014) https://doi.org/10.1088/1674-1137/38/9/090001
  • A.T. Yue et al. Improved Determination of the Neutron Lifetime. Phys. Rev. Lett. 111, 222501 (2013) https://doi.org/10.1103/PhysRevLett.111.222501
  • I. Angeli, K.P. Marinovab. Table of experimental nuclear ground state charge radii: An update. Atomic Data and Nuclear Data Tables 99 (2013) 69–95. https://doi.org/10.1016/j.adt.2011.12.006
  • Chowdhury, P.R. et al. Modified Bethe-Weizsacker mass formula with isotonic shift and new driplines. Mod. Phys. Lett. A20 p.1605–1618. (2005). https://doi.org/10.1142/S021773230501666X
  • W. D. Myers et al. Table of Nuclear Masses according to the 1994 Thomas-Fermi Model.(from nsdssd.lbl.gov)
  • Walter Greiner, Nuclear Shells in the Superheavy Region within Meson Field Theory. J.Nucl.Radiochem.Sci.,Vol. 3, No. 1, (2002)
  • Seshavatharam U. V. S. and Lakshminarayana, S. Method for Fitting & Estimating the Stability Range of Atomic Nuclides. Prespacetime journal, Vol 7, Issue 8, pp. 1244–1258 (2016)
  • Srinivasan, G. The Maximum Mass of Neutron Stars. Bulletin of Astronomic Society of India, 30, 523-547. (2002) https://doi.org/10.1007/s001590200016
  • Sebastien Guillot et al. Measurement of the Radius of Neutron Stars with High S/N Quiescent Low-mass X-ray Binaries in Globular Clusters. Astrophys.J. 772 (2013). https://doi.org/10.1088/0004-637x/772/1/7
  • E. Rutherford, The Scattering of α and β rays by Matter and the Structure of the Atom, Philos. Mag., vol 6, ppioi. 21, (1911)
  • Robert Hofstadter, Rudolf Mössbauer. The electron-scattering method and its application to the structure of nuclei and nucleons. Nobel Lecture, (December 11, 1961)
  • The Periodic Table of the Elements (including Atomic Radius). ww.sciencegeek.net/tables/AtomicRadius.pdf
  • Ashoke Sen. Developments in Superstring theory. CERN Document server, hep- ph/9810356 (2009) https://cds.cern.ch/record/368056/files/9810356.pdf. 29 .
  • Edward Witten. What Every Physicist Should Know About String Theory. GR Centennial Celebration, Strings 2015, Bangalore, India. (2105). http://member.ipmu.jp/yuji.tachikawa/stringsmirrors /2015/26-06-2015-Edward- Witten.pdf.