• ISSN No. Print
  • ISSN No. Online
  • Registration No.
  • Periodicity
  • Print
  • Online
  • Website

Atomic Multiplet and Charge Transfer Effects in the Resonant Inelastic X-Ray Scattering (RIXS) Spectra at the Nickel L2,3 Edge of NiF2



J Jiménez-Mier P Olalde-Velasco, P De La Mora, W-L Yang, and J Denlinger


Resonant inelastic x-ray scattering (RIXS) is used to study the electronic structure of NiF2, which is the most ionic of the nickel compounds. RIXS can be viewed as a coherent two-steps process involving the absorption and the emission of x-rays. The soft x-ray absorption spectrum (XAS) at the metal L2,3 edge indicate the importance of atomic multiplet effects. RIXS spectra at L2,3 contain clearly defined emission peaks corresponding to d-excited states of Ni2+ at energies few eV below the elastic emission, which is strongly suppressed. These results are confirmed by atomic multiplet calculations using the Kramers-Heisenberg formula for RIXS processes. For larger energy losses, the emission spectra have a broad charge-transfer peak that results from the decay of hybridized Ni(3d)-F(2p) valence states. This is confirmed by comparison of the absorption and emission spectra recorded at the nickel L and fluorine K edges with F p and Ni d partial density of states using LDA + U calculations.


Core-level spectroscopies. RIXS, Nickel difluoride, Electronic structure


  • Becke, A.D. & Johnson, E.R. (2006) A simple effective potential for exchange. J. Chem. Phys. 24, #221101.
  • Blaha, P. et al. WIEN2k an Augmented Plane Wave Plus Local Orbital Program for Calculating Crystal Properties, Vienna University of Technology, Vienna, 2001.
  • Chiuzb˘aian, S. G. et al. (2005) Localized Electronic Excitations in NiO Studied with Resonant Inelastic X-Ray Scattering at the Ni M Threshold: Evidence of Spin Flip. Phys. Rev. Lett. 95, #197402
  • Cowan, R.D. (1981). The Theory of Atomic Structure and Spectra, Berkeley: University of California Press.
  • Dagotto, E. (2005) Complexity in Strongly Correlated Electronic Systems, Science 309, 257–262.
  • Dufek, P., Schwarz, K. & Blaha, P. (1993) Electronic structure of MnF2 and NiF2, Phys. Rev. B 48, 12672–12681.
  • Ghiringhelli, G. et al. (2009) Observation of Two Nondispersive Magnetic Excitations in NiO by Resonant Inelastic Soft-X-Ray Scattering, Phys. Rev. Lett. 102, #027401.
  • Godby, R., Schlu¨ter, M. & Sham, L. (1986) Accurate Exchange-Correlation Potential for Silicon and Its Discontinuity on Addition of an Electron. Phys. Rev. Lett. 56, 2415–2418.
  • de Groot, F. & Kotani, A. (2008) Core Level Spectroscopy of Solids, Boca Raton, Fl, CRC Press.
  • de Groot, F. (2001) High-Resolution X-ray Emission and X-ray Absorption Spectroscopy. Chemistry Review 101, 1779–1808.
  • de Groot, F. (2005) Multiplet effects in X-ray spectroscopy. Coordination Chemistry Reviews 249, 31–63.
  • Imada, M., Fujimori, A. & Tokura, Y. (1998) Metal-insulator transitions, Rev. Mod. Phys. 70, 1039–1263.
  • Jia, J.J. et al. (1995) First experimental results from IBM/TENN/TULANE/ LLNL/LBL undulator beamline at the advanced light source. Rev. Sci. Instrum. 66, 1394–1397.
  • Jiménez-Mier, J., Ederer, D.L. & Schuler, T. (2005) X-ray Raman scattering at the manganese L edge of MnF2: Valence emission of Mn2+. Phys. Rev. A 72, #022502.
  • van der Laan, G. et al. (1986) Comparison of X-ray absorption with x-ray photoemission of nickel diahlides and NiO, Phys. Rev. B, 33, 4253–4263.
  • Lee, D. H. et al. (2012) Conversion mechanism of nickel fluoride and NiO-doped nickel fluoride in Li ion batteries. Electrochimica Acta 59, 213–221.
  • Lee, D.H. et al. (2014) Understanding improved electrochemical properties of NiO-doped NiF2- C composite conversion materials by X-ray absorption spectroscopy and pair distribution function analysis, Phys. Chem. Chem. Phys. 16, 3095–3102.
  • Olalde-Velasco, P. et al. (2011) Direct probe of Mott-Hubbard to charge-transfer insulator transition and electronic structure evolution in transition-metal systems, Phys. Rev B. 83, #241102(R).
  • Olalde-Velasco, P., Jiménez-Mier, J., Denlinger, J., & Yang, W.-L. (2013) Atomic multiplets at the L2,3 edge of 3d transition metals and the ligand K edge in x-ray absorption spectroscopy of ionic systems, Phys. Rev. B 87, #245136.
  • Perdew J.P., Burke, K & Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865–3868.
  • Stavitski, E. & de Groot, F.M.F. (2008) The CTM4XAS program for EELS and XAS spectral shape analysis of transition metal L edges. Micron 41, 687–694.
  • Tran, F. & Blaha, P. (2009) Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential. Phys. Rev. Lett. 102, #226401.
  • Yang, L., Luo, W. & Chen, G.-Z. (2013) In Situ Synthesis of Ni(o) Catalysts Derived from Nickel Halides for Hydrolytic Dehy-drogenation of Ammonia Borane. Catalysis Letters, 143, 873–880.
  • Yang, Y. et al. (2014) Flexible Three-Dimensional Nanoporous Metal-Based Energy Devices. J. Am. Chem. Soc. 136, 6187–6190.
  • Zaanen, J., Sawatzky, G.A. & Allen, J.W. (1985) Band Gaps and Electronic Structure of Transition-Metal Compounds, Phys. Rev. Lett. 55, 418–421.
  • Zhang, H., Zhou, Y,-N., Sun, Q., & Fu, Z,-W. (2008) Nanostructured nickel fluoride thin film as a new Li storage material, Solid State Sciences 10, 1166–1172.
Call for Papers Publication Policy Instructions to the Authors Paper Submission Subscription Form Copyright Form Author Profile Format Sample paper Recommend to a Librarian

Refereed Research Journal

Member of CrossRef

Index Copernicus Value

ICV 2014: 43.38


Call for Papers

Invites Papers for next issue of Journal of Nuclear Physics, Material Sciences, Radiation and Applications


Journal of Nuclear Physics, Material Sciences, Radiation and Applications is published Bi - Annually

Number-1 August
Number-2 February