• ISSN No. Print
  • ISSN No. Online
  • Registration No.
  • Periodicity
  • Print
  • Online
  • Website

Radio-Optically- and Thermally Stimulated Luminescence of Zn(BO2)2:Tb3+ exposed to Ionizing Radiation



E Cruz-Zaragoza, G Cedillo Del Rosario, M García Hipólito, J Marcazzó, J M Hernández A, E Camarillo and H Murrieta S


The optical absorption of zinc tetraborate at different concentrations of the terbium impurity (0, 0.5, 1, 2, 4, 8 mol%) was analyzed. The radioluminescence (RL) emission spectra was obtained after beta irradiation of a 90Sr/90Y source. The RL spectrum showed the characteristics bands of Tb3+ with two main emissions at 489 nm and 546 nm which corresponding to the5D47F6 and 5D47F5 transitions respectively in this ion. The OSL and TL characteristics have been analyzed. The stimulation blue light (497 nm) of a diode laser at 500 mA was used to bleach the thermoluminescent (TL) signals obtained with 5Gy of 60Co source. The two main glow peaks (79 and 161 °C) are sensitives under 497 nm stimulation, and they were shifted to higher temperature values and faded their TL intensities. Similar behavior of TL glow curves before and after OSL stimulation with blue light was observed when the samples were exposed to 30 Gy gamma dose of 137Cs irradiator. The OSL signal response was linear with the dose range of 1-10 Gy and increased their response up to 200 Gy gamma dose. The OSL shows a bleaching sensitive shallow traps and diminishing the intensity of the TL glow curves remaining a complex traps distribution. The RL, TL and OSL properties were investigated in Zn(BO2)2:Tb3+ phosphor.


Optically Stimulated Luminescence; Radioluminescence; Thermoluminescence; Radiation effects; Zinc borate


  • Annalakshmi, O., Jose, M.T., Madhusoodanan, U., Subramanian, J., Venkatraman, B., Amarendra, G., Mandal, A.B. (2014). Thermoluminescence dosimetric characteristics of thulium doped ZnB2O4 phosphor. J. Lumin. 146, 295–301.
  • Aznar, M.C. (2005). Real-time in vivo luminescence dosimetry in radiotherapy and mammography using Al2O3:C. Risø-PhD-12(EN), Denmark.
  • Bos, A.J.J. High sensitivity thermoluminescence dosimetry. Nucl. Instrum. Methods B 184, 3-28 (2001).
  • Cedillo Del Rosario, G., Cruz-Zaragoza, E., García Hipólito, M., Marcazzó, J., Hernández, J.M.A., Murrieta H.S. (2017). Synthesis and stimulated luminescence properties of Zn(BO2)2:Tb3+. Applied Radiation and Isotopes 127, 103–108.
  • Çetin, A., Kibar, R., Ayvacikli, M., Tuncer, Y., Buchal, Ch., Townsed, P.D., Karali, T., Selvi, S., Can, N. (2007). Optical properties of Tb implantation into ZnO. Surface & Coatings Technology 201, 8534–8538.
  • Chen, R., & Pagonis, V. (2011). Thermally and Optically Stimulated Luminescence: A Simulation Approach. United Kingdom: John Wiley & Sons Ltd.
  • Cruz-Zaragoza, E., Furetta, C., Marcazzó, J., Santiago, M., Guarneros, C., Pacio, M., Palomino, R. (2016). Beta radiation induced luminescence of polycrystalline Cu-doped Li2B4O7. J. Lumin. 179, 260–264.
  • Furetta, C., Kitis, G., Weng, P.S., Chu, T.S. (1999) Thermoluminescence characteristics of MgB4O7:Dy,Na. Nucl. Instrum. Methods A 420, 441–445.
  • Furetta, C., Prokic, M., Salamon, R., Kitis, G. (2000). Dosimetric characterization of a new production of MgB4O7:Dy,Na thermoluminescent material. Applied Radiation and Isotopes 51, 243–250.
  • Huntley, D.J., Godfrey-Smith, D.I., Thewalt, M.L.W. (1985). Optical dating of sediments. Nature 313, 105–107.
  • Kazanskaya, V.A., Kuzmin, V.V., Minaeva, E.E., Sokolov, A.D. (1974). Magnesium borate radiothermoluminescent detectors. In Proc. 4th Int. Conf. Luminescence Dosimetry (pp. 581-592). Krakow, Poland.
  • Krbetschek, M.R., Trautmann, T. A (2000). spectral radioluminescence study for dating and dosimetry. Radiat. Meas. 32, 853–857.
  • Li, J; Zhang, C.X., Tang, Q., Zhang, Y.L., Hao, J,Q., Su, Q., Wang, S.B. (2007). Synthesis, photoluminescence, thermoluminescence and dosimetry properties of novel phosphor Zn(BO2)2:Tb. J. Phys. Chem. Solids 68,143-147.
  • Li, J., Zhang, C., Tang, Q., Hao, J., Zhang, Y., Su, Q., Wang, S. (2008). Photoluminescence and thermoluminescence properties of dysprosium doped zinc metaborate phosphors. J. Rare Earths 26, 203–206.
  • McKeever, S.W.S., & Chen R. (1997). Luminescence models. Rad. Meas. 27(5/6), 625-661.
  • Olko, P. Advantages and disadvantages of luminescence dosimetry (2010). Rad. Meas. 45, 506–511.
  • Petö, Á. (1996). Relative yields of radioluminescence and thermoluminescence in several TL phosphors. Radiat. Prot. Dosim. 65(1/4), 123–126.
  • Petö, Á., Kelemen, A. (1996). Radioluminescence properties of alpha-Al2O3 TL dosemeters. Radiat. Prot. Dosim. 65, 139–142.
  • Prokic, M. (1980). Development of highly sensitive CaSO4:Dy/Tm and MgB4O7:Dy/Tm sintered thermoluminescent dosimeters. Nucl. Instrum. Methods 175, 83–86.
  • Sabharwal, S.C., (1998). Sangeeta. Effect of sodium doping on TL and optical properties of barium borate (BaB2O4) single crystals. J. Crystal Growth 187, 253-258.
  • Schulman, J.H., Kirk, R.D., West, E.J. (1967). Use of lithium borate for thermoluminescence dosimetry. In Proc. Int. Conf. on Luminescence Dosimetry, US AEC Symposium series CONF-650637 (pp. 113-117). Stanford University, USA.
  • Santiago, M., Graseli, C., Caseli, E., Lester, M., Lavat, A., Spano, F. (2001). Thermoluminescence of SrB4O7:Dy. Phys. Stat. Sol. (a) 185(2), 285–289.
  • Santiago, M., Lester, M., Caseli, E., Lavat, A., Ges, A., Spano, F., Kessler, C. (1998). Thermoluminescence of sodium borates compounds containing copper. J. Mater. Sci. Letters 17, 1293–1296.
  • Takenaga, M., Yamamoto, O., Yamashita, T. (1980). Preparation and characteristics of Li2B4O7:Cu phosphor. Nucl. Instrum. Methods 175, 77–78.
Call for Papers Publication Policy Instructions to the Authors Paper Submission Subscription Form Copyright Form Author Profile Format Sample paper Recommend to a Librarian

Refereed Research Journal

Member of CrossRef

Index Copernicus Value

ICV 2014: 43.38


Call for Papers

Invites Papers for next issue of Journal of Nuclear Physics, Material Sciences, Radiation and Applications


Journal of Nuclear Physics, Material Sciences, Radiation and Applications is published Bi - Annually

Number-1 August
Number-2 February