J. Nucl. Phy. Mat. Rad. A

Effects of Low-Energy Laser Irradiation on Sperm Cells Dynamics of Rabbit (Oryctolagus Cuniculus)

J.M. De Jesús-Miranda, I. A. Mandujano, F. Méndez3, Y.J. Castillo, J. Mulia, C. García, Y.E. Felipe and D. Osorio-González

  • Download PDF
  • DOI Number

sperm motility, photo-biostimulation.

PUBLISHED DATE August 07, 2017
PUBLISHER The Author(s) 2017. This article is published with open access at www.chitkara.edu. in/publications

Infertility is a world disease in which a couple is unable to achieve pregnancy. There are numerous parameters to determinate fertility; nevertheless, sperm motility is by consensus one of the most important attributes to evaluate male fertility. Contributions to a better understanding of this crucial parameter are imperative; hence, the aim of this investigation was to assess the effect of low-energy laser irradiation on sperm cell dynamics in thawed samples that were cryopreserved. We used a 405 nm blue laser beam to irradiate spermatic cells from rabbit inside a temperature-controlled dispersion chamber at 37 °C; then, we applied an image recognizing system to calculate individual sperm trajectories and velocities. We found that sperms raise its motility after irradiation suggesting that λ=405 nm is an optimal wavelength for spermatic photo-stimulation.

Page(s) 187–196
URL http://dspace.chitkara.edu.in/jspui/bitstream/1/878/1/51018_JNP_Osorio-Gonz%c3%a1lez.pdf
ISSN 2321-8649
DOI https://doi.org/10.15415/jnp.2017.51018
  • Abdel-Salam, Z. y M.A. Harith. (2015). Laser researches on livestock semen and oocytes: A Brief Review. Journal of Advanced Research. 6, 311–317
  • Agarwal, A., Saleh, R.A. and M.A. Bedaiwy. (2003). Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 79(4), 829–843
  • Anderson, M.J., and Dixson, A.F. (2002). Sperm competition Motility and the midpiece in primates. Nature, 416, 496
  • Beltrán, K., de Jesús-Miranda, J.M., Castro, J.A., Mandujano-Rosas, L.A., Paulín-Fuentes, J.M. y D. Osorio-González. (2016). Using Green Fluorescent Protein to Correlate Temperature and Fluorescence Intensity into Bacterial Systems. JNPMSRA. 4(1), 49–57
  • Carrel, D., and Patterson, M. (2010). Reproductive Endocrinology and Infertility: Integrating Modern Clinical and Laboratory Practice. Springer. 375 p
  • Castilla, J.A., Morancho-Zaragoza, J., Aguilar, J., Prats-Gimenez, R., Gonzalvo, M.C., Fernández-Pardo, E., Álvares, C., Calafell, L., and L. Martinez. (2005). Quality specifications for seminal parameters based on the state of the art. Hum Reprod. 20(9), 2573–2578
  • Ebner, T., Moser, M., and Tews, G. (2005). Possible applications of a noncontact 1.48 lm wavelength diode laser in assisted reproduction technologies. Hum. Reprod. Update 11(4), 425–435.
  • Elia, J., Imbrogno, N., Delfino, M., Mazzilli, R., Rossi, T. and F. Mazzili. (2010). The importance of the sperm motility classes-Future directions. Open Androl J. 2(1), 42–4 3.
  • Ferramosca, A., Provenzano, S.P., Coppola, L., and V. Sara. (2011). Mitochondrial Respiratory Efficiency is Positively Correlated With Human Sperm Motility. J Urology. 79(1), 809–814
  • Fritz, C.O., Morris, P.E. and J.J. Richler. (2012). Effect size estimates: current use, calculations, and interpretation. Journal of Experimental Psychology: General; 141(1), 2–18.
  • Gadella, B.M., and C. Luna. (2014). Cell biology and functional dynamics of the mammalian sperm surface. Theriogenology. 81(1), 74–84
  • Hartmann, R., Steiner, R., Hoffman, N., and R. Kaufmann. 1983. Human sperm motility: enhancement and inhibition measured by laser Doppler spectroscopy. Andrologia. 15(2), 120–134
  • Jensen, T.K., Jacobsen, R., Christensen, K., Nielsen, N.C. and E. Bostofte. 2009. Good Semen Quality and Life Expectancy: A Cohort Study of 43, 277 Men. Am J Epidemiol. 170(5), 559–65
  • Jeyendran, R.S. 2000. Interpretation of semen analysis results: A practical guide. Cambridge University Press. U.k.
  • Karu, T.I. 2012. Laser in Infertility Treatment: Irradiation on Oocytes and Spermatozoa. Photomed Laser Surg. 30(5), 239–241
  • Karu. T.I. 2010. Mithocondríal Mechanisms of Photobiomodulation in Context of New Data About Multiple Roles of ATP. Photomed Laser Surg. 28(2), 159–160
  • Kovac, J.R., Pastuszak, A.W. y D.J. Lamb. (2013). The use of genomics, proteomics, and metabolomics in identifying biomarkers of male infertility. Fertil. Steril. 99(4), 998–1007.
  • Lubart, R., Levinshal, T., Cohen, N., Friedmann, H., y H, Breitbart. (1996). Changes in Calcium Transport in Mammalian Sperm Mitochondria and Plasma Membrane due to 633 nm and 780 nm Irradiation. Laser. in der Medizin / Laser in Medicine, (Conference paper) 449–453
  • Menkveld, R. 2010. Clinical significance of the low normal sperm morphology value as proposed in the fifth edition of the WHO Laboratory Manual for the Examination and Processing of Human Semen. Asian J Androl. 2010. 12(1), 47–58.
  • Montag, M., Rink, K., Delacretaz, G., and van der Ven, H. (2000). Laser-induced immobilization and plasma membrane permeabilization in human spermatozoa. Hum. Reprod. 15(4), 846–852
  • Mukai, C. and M. Okuno. Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement. Biol Reprod. 71(2), 540–547
  • Passarella, S. y and T.I. Karu. (2014). Absorption of monochromatic and narrow band radiation in the visible and near-IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation. J Photochem Photobiol B. 140, 344–358
  • Pereira, R., Sá, R., Barros, A. and M. Sousa. (2017). Major regulatory mechanisms involved in sperm motility. Asian J Androl. 19(1), 5–14
  • Push., H.H. The Importance of Sperm Motility for the Fertilization of Human Oocytes in vivo and in-vitro. Andrologia. 19(5), 514–527
  • Tadir, Y., Neev, J., and Berns, M.W. 1992. Laser in assisted reproduction and genetics. J. Assist. Reprod. Genet. 9(4), 303–305
  • Tahmasbpour, E., Balasubramanian, D. and A. Agarwal. (2014). A multi-faceted approach to understanding male infertility: gene mutations, molecular defects and assisted reproductive techniques (ART). J Assist Reprod Genet. 31(9), 1115–1137.
  • Vogt, P.H. (2004). Molecular genetic of human male infertility: from genes to new therapeutic perspectives. Curr Pharm Des. 10(5), 471–500.
  • World Health Organization. (2010). WHO laboratory manual for the Examination and processing of human semen. 5th ed. World Health Organization
  • Chang, M. C. (1951). Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature, 168(4277), 697–698.
  • Yanagimachi, R. (1969). In vitro capacitation of hamster spermatozoa by follicular fluid. Journal of reproduction and fertility, 18(2), 275–286.
  • Kushibiki, T., Hirasawa, T., Okawa, S., & Ishihara, M. (2013). Blue Laser Irradiation Generates Intracellular Reactive Oxygen Species in Various Types of Cells. Photomedicine and Laser Surgery, 31(3), 95–104.
  • Kuroda, S., Yumura, Y., Mori, K., Yasuda, K., Takeshima, T., Kawahara, T. & Ikeda, M. (2016). Negative correlation between presence of reactive oxygen species and Sperm Motility Index in whole semen samples of infertile males. Revista Internacional de Andrología. http://dx.doi.org/10.1016/j.androl.2016.08.002