J. Nucl. Phy. Mat. Sci. Rad. A.

Evolution of Shapes and Search for Shape Coexistence in Sd-Shell Nuclei

M.Kumawat, G. Saxena, M. Kaushik, S. K. Jain and Mamta Aggarwal

  • Download PDF
  • DOI Number

Relativistic mean-field theory; Macroscopic-microscopic approach (Mac-Mic); Shape-coexistence; Shape transition; sd-shell nuclei.

PUBLISHED DATE February 2018
PUBLISHER The Author(s) 2018. This article is published with open access at www.chitkara.edu.in/publications

A detailed and systematic study has been performed using state dependent Relativistic Mean-Field plus BCS (RMF+BCS) approach to investigate shape evolution for even-even isotopes of Ne, Mg, Si and S. We perform quadrupole constraint calculation using NL3* parameter and look into the variation of binding energy with respect to deformation and find the shape and deformation corresponding to energy minima. We find various isotopes showing shape coexistence and shape transition while moving from proton drip-line to neutron drip-line. These results are compared with Macroscopic-microscopic approach (Mac-Mic) with Nilson Strutinsky (NS) prescription and some other works and are found consistent for these sd-shell nuclei.

Page(s) 283–290
URL http://dspace.chitkara.edu.in/jspui/bitstream/123456789/708/1/003JNP_Kumwat.pdf
ISSN Print : 2321-8649, Online : 2321-9289
DOI https://doi.org/10.15415/jnp.2018.52025
  • Cceres, L., et al.. Shells and shapes in the 44S nucleus. Acta Physica Polonica B 42, 3 (2011).
  • Nobuo Hinohara et al.. Shape fluctuations in the ground and excited 0+ states of 30,32,34Mg. Phys. Rev. C 84, 061302(R) (2011).
  • Wimmer, K., et al.. Discovery of the shape coexisting 0+ State in 32Mg by a two neutron transfer reaction. Phys. Rev. Lett. 105, 252501 (2010).
  • Li, A., Zhou,X. R., and Sagawa ,H., Tensor force and shape evolution of Si isotopes in the Skyrme-Hartree-Fock model. Progr. Theor. Exp. Phys. 2013, 063D03 (2013).
  • Davies, A. D., et al.. Probing Shell Structure and Shape Changes in Neutron-Rich Sulfur Isotopes through Transient-Field g-Factor Measurements on Fast Radioactive Beams of 38S and40S. Phys. Rev. Lett. 96, 112503 (2006).
  • Saxena, G., Kumawat, M., Kaushik, M., Jain, S. K., and Mamta Aggarwal. Twoproton radioactivity with 2p halo in light mass nuclei A = 1834. Phys. Lett. B 775, 126 (2017).
  • Saxena, G., Kumawat, M., Kaushik, M., Singh, U. K., Jain,S. K., Somorendro Singh, S., and Mamta Aggarwal. Implications of occupancy of 2s1/2 state in sd-shell within RMF+BCS approach. Int. J. Mod. Phys. E 26, 1750072 (2017).
  • Lalazissis, G. A., Karatzikos, S., Fossion, R., Pena Arteaga, D., Afanasjev, A. V., and Ring, P.,The effective force NL3 revisited. Phys. Lett. B 671, 36 (2009).
  • Mamta Aggarwal. Proton radioactivity at non-collective prolate shape in high spin state of 94Ag. Phys. Lett. B 693, 489 (2010).
  • Mamta Aggarwal. Coexisting shapes with rapid transitions in odd-Z rare-earth proton emitters. Phys. Rev. C 89, 024325 (2014).
  • Lalazissis, G. A., Vretenar, D., and Ring,P., Relativistic Hartree-Bogoliubov description of sizes and shapes of A=20 isobars. Phys. Rev. C 63, 034305 (2001).
  • Singh, D., Saxena, G., Kaushik, M., Yadav, H. L., and Toki, H., Study of twoproton radioactivity within the relativstic mean-field plus bcs approach. Int. J. Mod. Phys. E 21, 1250076 (2012).
  • Sugahara, Y., and Toki, H., Relativistic Mean-Field Theory for Unstable Nuclei with Non-Linear σ and (Omega) terms. Nucl. Phys. A 579, 557 (1994).
  • Yadav, H. L., Kaushik, M., and Toki, H., Description of drip-line nuclei within the Relativistic Mean-Field plus BCS Aproach. Int. J. Mod. Phys. E 13, 647 (2004).
  • Geng, L. S., Toki, H., Sugimoto, S., and Meng, J., Relativistic mean field theory for deformed nuclei with pairing correlations. Prog. Theor. Phys. 110, 921 (2003).
  • Gambhir,Y. K., Ring, P., and Thimet, A., Relativistic mean field theory for finite nuclei. Annals Phys. 198, 132 (1990).
  • Flocard, H., Quentin, P., Kerman, A. K., and Vautherin, D., Nuclear deformation energy curves with the constrained Hartree-Fock method. Nucl. Phys. A 203, 433 (1973).
  • Geng,L. S., Toki, H., Ozawa, A., and Meng, J., Proton and neutron skins of light nuclei within the relativistic mean field theory Nucl. Phys. A 730, 80 (2004).
  • Ring,P.,Relativistic mean field theory in finite nuclei. Prog. Part. Nucl. Phys. 37, 193 (1996).
  • Saxena, G., Singh, D., Kaushik, M., and Singh,S. S., RMF+ BCS approach for drip-line isotopes of Si., Canadian Journal of Physics 92, 253 (2014).
  • Saxena, G., and Singh, D., Study of neutron magic drip-line nuclei within relativistic mean-field plus BCS Approach. Int. J. Mod. Phys. E 22, 1350025 (2013).
  • Dobaczewski, J., Flocard, H., and Treiner, J., Hartree-Fock-Bogolyubov description of nuclei near the neutron-drip line. Nucl. Phys. A 422, 103 (1984).