J. Nucl. Phy. Mat. Sci. Rad. A.

Shape Coexistence in Hot Rotating 100Nb

Mamta Aggarwal

  • Download PDF
  • DOI Number
    https://doi.org/10.15415/jnp.2018.52026
KEYWORDS

Statistical theory; shape transition, A= 80-100, level density parameter, shape coexistence

PUBLISHED DATE February 2018
PUBLISHER The Author(s) 2018. This article is published with open access at www.chitkara.edu.in/publications
ABSTRACT

Temperature and angular momentum induced shape changes in the well deformed 100Nb have been investigated within the theoretical framework of Statistical theory combined with triaxially deformed Nilson potential and Strutinsky prescription. Two shape coexistence, one in the ground state of 104Nb between oblate and triaxial shapes and another one between oblate and rarely seen prolate non-collective shapes in excited hot rotating 100Nb at the mid spin values around 14-16h are reported for the first time. The level density parameter indicates the influence of the shell effects and changes drastically at the shape transition. The band crossing is observed at the sharp shape transition.

Page(s) 291–298
URL http://dspace.chitkara.edu.in/jspui/bitstream/123456789/709/1/004JNP_Aggarwal.pdf
ISSN Print : 2321-8649, Online : 2321-9289
DOI https://doi.org/10.15415/jnp.2018.52026
REFERENCES
  • Aggarwal, Mamta, Phys. Lett. B 693, 489 (2010).
  • Aggarwal, Mamta, Phys. Rev. C 90, 064322 (2014).
  • Rajasekaran, M., Rajasekaran, T. R., and Arunachalam, N., Phys. Rev. C 37, 307 (1988).
  • Bethe, H., Rev. Mod. Phys. 9, 69 (1937).
  • Ericson, T., Adv. Phys. 9, 425 (1960).
  • A. Bohr and B. R. Mottelson, in Nuclear Structure, Vol. I, P 281 (Benjamin, New York, 1969).
  • Aggarwal, M., Int. J. of Mod. Phys. E 17, 1091 (2008).
  • Rajasekaran, M., Rajasekaran, T. R., and Arunachalam, and Devanathan, V., Phys. Rev. Lett. 61, 2077 (1988). .
  • Aggarwal, M., and Kailas, S., Phys. Rev. C 81, 047302 (2010).
  • Wallace, R. K. , and Woosely, S. E., Astrophys. J. Suppl. 45, 389 (1981).
  • Naoki Tajima and Norifumi Suzuki, Phys. Rev. C 64, 037301, (2001).
  • Lalazissis, G. A., Sharma, M. M., and Ring, P. , Nucl. Phys. A 597, 35 (1996).
  • Ignatyuk A. , et al. Nucl. Phys. A 346, 191 (1980).
  • Newton, J. O. , et. al., Phys. Rev. Lett. 46, 1383 (1981).
  • Lhersonneau,G., et. al. , Phys, Rev. C 49 (1994) 1379.
  • Wood, J.L, et. Al, Phys. Rep. 215 (1992) 101.
  • Aggarwal, M., Phys. Rev. C 89, 024325 (2014).
  • Saxena, G., et al., Proceedings of the DAE Symp. on Nucl. Phys. 62, 112 (2017).
  • Aggarwal, M. and Saxena, G., Proceedings of the DAE Symp. on Nucl. Phys. 62, 292 (2017).
  • Aggarwal, M., and Kailas, S., Proceedings of the DAE Symp. on Nucl. Phys. 62, 96 (2017).
  • Aggarwal, M., Phys. Lett. B (communicated) (2018).
  • Nyako, B. M., et al., Phys. Rev. C 60, 024307 (1999).
  • Dubuc, J. et al., Phys. Rev. C 37, 1932 (1988).
  • A. L. Goodman, Phys. Rev. C 37, 2162 (1988).
  • P. Moller et al., At. Data Nucl. Data Table, 59, 185 (1995).
  • Frauendorf, S. Rev. Mod. Phy., 73, 463 (2001).
  • Goodman, A. L. , Phys. Rev. C 35, 2338 (1987).
  • Aggarwal, M., Journal of Nucl. Phys. Material Sci. Radiation and Applications (JNPMSRA) 3, No. 2, 179 (2016).
  • K. Banerjee, et. al., Phys. Rev. C 85 (2012) 064310.
  • M. Gohil et. al., Phys. Rev. C 91 (2015) 014609; EPJ Web of Conf. 66 (2014) 03073.
  • Balaram Dey et. al.,Phys. Rev. C 91 (2015) 044326.