J. Nucl. Phy. Mat. Sci. Rad. A.

Effective Atomic Number Dependence of Radiological Parameters of Some Organic Compounds at 122 KeV Gamma Rays

Mohinder Singh, Akash Tondon, Bhajan Singh and B. S. Sandhu

  • Download PDF
  • DOI Number

Effective atomic number; mass-energy absorption coefficient; mass attenuation coefficient; HVL; CT number.

PUBLISHED DATE February 2018
PUBLISHER The Author(s) 2018. This article is published with open access at www.chitkara.edu.in/publications

Mass attenuation coefficient is a fundamental parameter of radiation interaction, from which the other radiological parameters like half Value Layer [HVL], tenth Value Layer [TVL], total atomic and electronic cross-sections, mass energy absorption coefficient, KERMA, CT number and effective atomic number are deduced. These parameters are extensively required in a number of fields such as diagnostic radiology, gamma ray spectroscopy, fluorescence analysis and reactor shielding. In the present work, mass attenuation coefficients are determined experimentally for some organic compounds at 122 keV incident photons using narrow-beam transmission geometry to establish a relation between effective atomic number (Zeff) and other deduced parameters. The experimental data for all these parameters are compared with the values deduced from WinXcom software package and are found to agree within experimental estimated errors. This study gives some insight about the photon interaction in some organic compounds whose effective atomic numbers match with some human body fluids.

Page(s) 299–310
URL http://dspace.chitkara.edu.in/jspui/bitstream/123456789/710/1/005JNP_Mohinder.pdf
ISSN Print : 2321-8649, Online : 2321-9289
DOI https://doi.org/10.15415/jnp.2018.52027
  • G. J. Hine, Phys. Rev., 85, 725 (1952).
  • J. H. Hubbell, Int. J. Appl. Radiat. Isot., 33, 1269 (1982). https://doi.org/10.1016/0020-708X(82)90248-4
  • J. H. Hubbell and S. M. Selzer, NISTIR, 5632 (1995).
  • L. Gerward, N. Guilbert, K. B. Jensen and H. Levring, Radiat. Phys. Chem., 71, 653 (2004).
  • S. R. Manohara and S. M. Hanagodimath, Nucl. Instr. and Meth. B, 258, 321 (2007). https://doi.org/10.1016/j.nimb.2007.02.101
  • M. P. Singh, B. S. Sandhu and B. Singh, Phys. Scripta, 76, 281 (2007). https:// doi.org/10.1088/0031-8949/76/4/001
  • I. Akkurt, S. Kilincarslan and C. Basyigit, Ann. Nucl. Eng., 31, 577 (2004). https://doi.org/10.1016/j.anucene.2003.07.002
  • I. Han and L. Demir, J. X-Ray Sci. Techno., 18, 39 (2010).
  • M. Buyukyildiz, M. Kuurudirek, M. Ekici, O. Icelli and Y. Karabul, Prog. Nucl. Energ., 100, 245 (2017). https://doi.org/10.1016/j.pnucene.2017.06.014
  • S. R. Manohara, S. M. Hanagodimath and L. Gerward, J. Nucl. Mater., 393, 465 (2009). https://doi.org/10.1016/j.jnucmat.2009.07.001
  • D. F. Jackson and D. J. Hawkes, Phys. Rep., 70, 169 (1981). https://doi.org/10.1016/0370-1573(81)90014-4
  • D. C. Creagh, Nucl. Instrum. Methods A, 255, 1 (1987). https://doi.org/10.1016/0168-9002(87)91064-3