J. Nucl. Phy. Mat. Sci. Rad. A.

Mass Attenuation Coefficient Measurements of Some Nanocarbon Allotropes: A New Hope for Better Low Cost Less-Cumbersome Radiation Shielding Over A Wide Energy Range

E.Rajasekhar, K.I. Narasimham, Aditya D. Kurdekar l.A. Avinash Chunduri, Sandeep Patnaik and K. Venkataramaniah

  • Download PDF
  • DOI Number
    https://doi.org/10.15415/jnp.2018.52028
KEYWORDS

SWCNTs; MWCNTs; Mass attenuation coefficient; NaI (Tl) detector.

PUBLISHED DATE February 2018
PUBLISHER The Author(s) 2018. This article is published with open access at www.chitkara.edu.in/publications
ABSTRACT

The mass attenuation coefficients of graphene, MWNTs and, SWNTs have been measured for gamma energy range 356 to 1332 keV from the radioactive sources 60Co, 133Ba and 137Cs using a well calibrated gamma ray spectrometer consisting of a 3´´x 3´´ NaI(Tl) scintillation detector coupled to a PC based 8K nuclear Multi Channel Analyser (MCA). In an interesting way results showed that MWNTs had the highest values of mass attenuation coefficients indicating their potential use as the best shielding material.

Page(s) 311–317
URL http://dspace.chitkara.edu.in/jspui/bitstream/123456789/711/1/006JNP_Venkataramaniah.pdf
ISSN Print : 2321-8649, Online : 2321-9289
DOI https://doi.org/10.15415/jnp.2018.52028
REFERENCES
  • T. Fujikawa and H. Arai, J. Elec. Spect. Relat. Phenom. 174 (2009) 85–92. https://doi.org/10.1016/j.elspec.2009.07.007
  • T. Fujikawa, J. Elec. Spect. Relat. Phenom. 173 (2009) 51–78. https://doi.org/10.1016/j.elspec.2009.04.011
  • K. Sawada, S.Murakami and N. Nagaosa, Phys. Rev. Lett. 96 (2006) 154802. https://doi.org/10.1103/PhysRevLett.96.154802
  • A.N. Lagarkov, and A.K. Sarychev, Phys. Rev. B 53 (1996) 6318–6336. https://doi.org/10.1103/PhysRevB.53.6318
  • Z. Peng, J. Peng and Y. Ou, Phys. Lett. A 359 (2006) 56–60. https://doi.org/10.1016/j.physleta.2006.05.076
  • S.B. Tooski, J. Appl. Phys. 109 (2011) 14318–14324. https://doi.org/10.1063/1.3525059
  • K.L. Dudley, R.W. Lawrence, Nano Lett. 5 (2005) 2131–2134. https://doi.org/10.1021/nl051375r
  • Z. Liu, G. Bai, Yi. Huang, Y. Ma, F. Du, F. Li, T. Guo, Y.Chen, Carbon. 45 (2007) 821–827. https://doi.org/10.1016/j.carbon.2006.11.020
  • A.L. Higginbotham, P.G. Moloney, M.C. Waid, J.G. Duque, C. Kittrell, H.K. Schmidt, J.J. Stephenson, S. Arepalli, L.L.Yowell, J.M. Your, Comp. Sci. and tech. 68 (2008) 3087–3092.
  • Gamma Vision -32, 1998.Ver 5.10.EG & G, ORTEC.
  • I. Kaplan , Nuclear Physics, Addison-Wesley, New York, 1972. [
  • J.H. Hubbell, and S.M. Seltzer, NIST Standard Database 126, National Institute of Standards and Technology; Gaithersburg, MD, July 2004.
  • J. Lu., D. Yuan, L. Jie, L. Weinan, E.K. Thomas, Nano Lett.. 8 (2008) 3325–3329. https://doi.org/10.1021/nl801744z
  • P. R. Bandaru and A. M. Rao, JOM 59, 33 2007 Special Issue on Nanomaterials for Electronic Applications. https://doi.org/10.1007/s11837-007-0036-1
  • S. H. Park, P. Theilmann, K. Yang, A. M. Rao, and P. R. Bandaru, Applied Physics Letters 96, 043115 2010 https://doi.org/10.1063/1.3292214
  • L. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, 2nd ed. Butterworth-Heinemann, Boston, 1995.
  • F.J. Garcia-Vidal, J.M. Pitarke, J.B. Pendry, Phys Rev Lett. 78 (1997) 4289–4292. https://doi.org/10.1103/PhysRevLett.78.4289
  • Z. Ye, W.D. Deering, A. Krokhin, J.A. Roberts, Phys Rev B. 74 (2006) 075425–5. https://doi.org/10.1103/PhysRevB.74.075425