J. Nucl. Phy. Mat. Sci. Rad. A.

Clustering aspects in 20Ne Alpha-conjugate Nuclear System

Manpreet Kaur, Birbikram Singh, S.K. Patra and Raj K. Gupta

  • Download PDF
  • DOI Number
    https://doi.org/10.15415/jnp.2018.52029
KEYWORDS

Clusters, Alpha conjugate nuclear system, Preformation probability

PUBLISHED DATE February 2018
PUBLISHER The Author(s) 2018. This article is published with open access at www.chitkara.edu.in/ publications
ABSTRACT

The clustering aspects in alpha-conjugate nuclear system 20Ne has been investigated comparatively within microscopic and macroscopic approaches of relativistic mean field theory (RMFT) and quantum mechanical fragmentation theory (QMFT), respectively. For the ground state of 20 Ne, the matter density distribution calculated within RMFT, depict the trigonal bipyramidal structure of 5α’s and within QMFT, the equivalent α+ 16 O cluster configuration is highly preformed. For excited state corresponding to experimental available energy, the QMFT results show that in addition to α+ 16 O clusters, other xα-type clusters (x is an integer) are also preformed but in addition np-xα type (n, p are neutron and proton, respectively) 10B clusters are having relatively more preformation probability, due to the decreased pairing strength in liquid drop energies at higher temperature. These results are in line with RMFT calculations for intrinsic excited state which show two equal sized fragments, probably 10 B clusters.

Page(s) 319–326
URL http://dspace.chitkara.edu.in/jspui/bitstream/123456789/716/1/007JNP_Singh%20%281%29.pdf
ISSN Print : 2321-8649, Online : 2321-9289
DOI https://doi.org/10.15415/jnp.2018.52029
REFERENCES
  • L. R. Hafstad and E. Teller, Phys. Rev. 54, 681 (1938) https://doi.org/10.1103/ PhysRev.54.681; F. Hoyle, D. N. F Dunbar, W. A. Wenzel, and W. Whaling, Phys. Rev. 92, 1095c (1953); Minutes of the New Mexico Meeting, Alberquerque, September 2–5; C. W. Cook, W. A. Fowler, and T. Lauritsen, Phys. Rev. 107, 508 (1957).
  • K. Ikeda, N. Takigawa, and H. Horiuchi, Prog. Theor. Phys. Suppl. E68, 464 (1968) https://doi.org/10.1143/PTPS.E68.464; W. Von Oertzen et al., Eur. Phys. J.A 11, 403 (2001) https://doi.org/10.1007/s100500170052; W. Von Oertzen, M. Freer, and Y. Ka-Enyo, Phys. Rep. 432, 43 (2006) https://doi.org/10.1016/j.physrep.2006.07.001.
  • J. P. Ebran, E. Khan, T. Niksic, and D.Vretenar, Nature 487, 341 (2012) https:// doi.org/10.1038/nature11246; Phys. Rev. C 87, 044307 (2013) https://doi.org/10.1103/PhysRevC.87.044307.
  • R. K. Sheline and K. Wildermuth, Nucl. Phys. 21, 196 (1960) https://doi. org/10.1016/0029-5582(60)90046-8; F. D. Becchetti, K. T. Hecht, J. Janecke, and D. Overway, Nucl. Phys. A 339, 132 (1980) https://doi.org/10.1016/03759474(80)90246-8; D. Jenkins, J. Phys. Conf. Series 436, 012016 (2013) https://doi.org/10.1088/1742-6596/436/1/012016.
  • T. Yahmaya, Phys. Lett. B 306, 1 (1993) https://doi.org/10.1016/03702693(93)91128-A; M. Freer and A. C. Merchant, J. Phys. G 23, 261 (1997) Kaur, M Singh, B Patra, SK Gupta, RK 326 https://doi.org/10.1088/0954-3899/23/3/002; M. Freer, Rep. Prog. Phys. 70, 2149 (2007) https://doi.org/10.1088/0034-4885/70/12/R03; E. D. Johnson et al., Eur. Phys. J. A 42, 135 (2009) https://doi.org/10.1140/epja/i2009-10887-1.
  • Y . Kanada-En’yo, M. Kimura, and A. Ono, Prog. Theor. Exp. Phys. 01A202 (2012).
  • H. Feldmeier, J. Schnack, Rev. Mod. Phys. 72, 655 (2000) https://doi.org/10.1103/RevModPhys.72.655.
  • P. Arumugam et al., PRC 71, 064308 (2005) https://doi.org/10.1103/PhysRevC.71.064308;
  • B. B. Singh, M. Kaur, V. Kaur, and R. K. Gupta, EPJ Web Conf. 86, 00048 (2015); JPS Conf. Proc 6, 030001 (2015); M. Kaur, B.B. Singh, S.K. Patra, and R.K. Gupta, Phys. Rev. C 95, 014611 (2017) https://doi.org/10.1103/ PhysRevC.95.014611; Proc. DAE Symposium on Nucl. Phys. 62, 506 (2017).
  • W. B. He et al., arXiv:1602.08955v3 [nucl-th] June, 2016.
  • Y. K. Gambhir, P. Ring, and A. Thimet, Ann. Phys. (NY) 198, 132 (1990) https:// doi.org/10.1016/0003-4916(90)90330-Q; C. E. Price and G. E. Walker, Phys. Rev. C 36, 354 (1987) https://doi.org/10.1103/PhysRevC.36.354; Y. Sugahara and H. Toki, Nucl. Phys. A579, 557 (1994) https://doi.org/10.1016/03759474(94)90923-7; P. K. Panda et al., Int. J. Mod. Phys. E 6, 307 (1997) https://doi.org/10.1142/S0218301397000202.
  • B.K. Sharma et al., JPG: Nucl. Part. Phys. 32, L1 (2006) https://doi.org/10.1088/0954-3899/32/1/L01.
  • J. Maruhn and W. Griener, Phys. Rev. Lett. 32, 548 (1974) https://doi.org/10.1103/PhysRevLett.32.548.
  • Raj K. Gupta et al., Phys. Rev. Lett. 35, 353 (1975) https://doi.org/10.1103/ PhysRevLett.35.353; Phys. Lett. B 60, 225 (1976) https://doi.org/10.1016/03702693(76)90286-0; Phys. Lett. B 67, 257 (1977) https://doi.org/10.1016/03702693(77)90364-1; Z. Physik A 283, 217 (1977) https://doi.org/10.1007/BF01418714.
  • H. Kröger and W. Scheid, J. Phys. G: Nucl. Phys. 6, L85 (1980) https://doi.org/10.1088/0305-4616/6/4/006.
  • W. D. Myers and W. D. Swiatecki, Nucl. Phys. 81, 1 (1966) https://doi.org/10.1016/0029-5582(66)90639-0.
  • J. Blocki, J. Randrup, W. J. Swiatecki, and C. F. Tsang, Ann. Phys. (NY) 105, 427 (1977) https://doi.org/10.1016/0003-4916(77)90249-4.
  • M. Bansal, R. Kumar, and R. K. Gupta, J. Phys.: Conf. Ser. 321, 012046 (2011) https://doi.org/10.1088/1742-6596/321/1/012046.
  • M. M. Coimbra et al., Nucl. Phys. A 535, 161 (1991) https://doi.org/10.1016/0375-9474(91)90521-7.
  • G.V. Rogachev et al., Prog. Theor. Phys. Suppl. 196, 184 (2012) https://doi. org/10.1143/PTPS.196.184; J. Phys.: Conf. Ser. 569, 012004 (2014) https://doi. org/10.1088/1742-6596/569/1/012004.