J. Nucl. Phy. Mat. Sci. Rad. A.

Signal of h → mt, tt in v2HDM⊗S3

E Barradas Guevara, F. Cázarez-Bush, O. Felix-Beltran, F. Gonzalez-Canales

KEYWORDS

Leptons, Seesaw mechanism, Flavour symmetry, 2HDM-III.

PUBLISHED DATE August 6, 2018
PUBLISHER The Author(s) 2018. This article is published with open access at www.chitkara.edu.in/publications.
ABSTRACT

Nowadays in particle physics, the exploration of the flavor physics through the Higgs boson phenomenology is one of the main goals in the field. In particular we are interested in the Lepton Flavour Violation (LFV) processes. In this work, we explore the processes h →mt, tt in the theoretical framework of a flavored extension of the Standard Model, which has two Higgs fields and the horizontal permutation symmetry S3 imposed in the Yukawa sector, this extension is called v2HDM⊗S3.We obtain the couplings fmt, tt as well as Br(h → mt) in function of the model parameters in function of the model parameters, which are constricted by means the experimental results of Keywords: fSM → mt reported in the literature.

Page(s) 23-26
URL http://dspace.chitkara.edu.in/jspui/bitstream/123456789/734/1/04_JNP.pdf
ISSN Print : 2321-8649, Online : 2321-9289
DOI 10.15415/jnp.2018.61004
REFERENCES
  • G. Aad, et al. (ATLAS Collaboration). Phys. Lett. B, 716, 1–29, (2012). https://doi.org/10.1016/j.physletb.2012.08.020
  • Chatrchyan, et al. (CMS Collaboration). Phys. Lett. B, 16, 30–61, (2012). https://doi.org/10.1016/j.physletb.2012.08.021
  • F. Capozzia, E. Lisic , A. Marroned, D. Montaninoe, A. Palazzod, Nuclear Physics B 908, 218–234, (2016). https://doi.org/10.1016/j.nuclphysb.2016.02.016
  • A. Gando, et al. (KamLAND). Phys. Rev. D, 83, 052002 (2011). https://doi.org/10.1103/PhysRevD.83.052002
  • A. Gando, et al. (KamLAND). Phys. Rev. D, 88, 033001 (2013). https://doi.org/10.1103/PhysRevD.88.033001
  • J. H. Choi, et al. (RENO). Phys. Rev. Lett. 116, 211801 (2016) https://doi.org/10.1103/PhysRevLett.116.211801
  • S. H. Seo, (RENO). Proceedings, 26th International Conference on Neutrino Physics and Astrophysics (Neutrino 2014), AIP Conf. Proc. 1666, 080002 (2015).
  • Y. Abe, et al. (Double Chooz). JHEP, 10, 086 (2014) [Erratum: JHEP02,074(2015)].
  • F. P. An, et al. (Daya Bay). Phys. Rev. Lett., 116, 061801 (2015). https://doi.org/10.1103/PhysRevLett.116.061801
  • T. Asaka, et al. Phys. Lett. B, 620, 17–26 (2005). https://doi.org/10.1016/j.physletb.2005.06.020
  • A. G. Beda, et al. (GEMMA Collaboration). Adv. High Energy Phys., vol. 2012, 350150 (2012).
  • Felix-Beltran, et al. Phys. Lett. B, 742, 347–352 (2015). https://doi.org/10.1016/j.physletb.2015.02.003
  • D. Atwood, L. Reina, and A. Soni, Phys. Rev. D, 55, 3156–3176 (1997). https://doi.org/10.1103/PhysRevD.55.3156
  • M. Krawczyk, and D. Sokolowska, International Linear Collider Workshop (LCWS07 and ILC07) Hamburg, Germany, May 30-June 3, 2007, eConf C0705302, p. HIG09 (2007), [141(2007)].
  • M. Krawczyk, Proceedings Europhysics Conference on High Energy Physics (EPS-HEP 2005). PoS HEP2005, 335 (2006).
  • F. F. Deppisch, Fortsch. Phys., 61, 622–644 (2013). https://doi.org/10.1002/prop.201200126
  • I. Dorsner, and S. M. Barr. Phys. Rev. D, 65, 095004 (2002). https://doi.org/10.1103/PhysRevD.65.095004
  • F .Gonzalez Canales, et al. Fortsch. Phys., 61, 546–570 (2013). https://doi.org/10.1002/prop.201200121
  • E. Barradas-Guevara, et al. Phys. Rev. D, 97, no. 3, 035003 (2018). https://doi.org/10.1103/PhysRevD.97.035003
  • G. Aad, et al. (ATLAS Collaboration). JHEP 211 (2015).