J. Nucl. Phy. Mat. Sci. Rad. A.

Dependence on the Identification of the Scale Energy Parameter ∼Q2 in the Quark Distribution Functions for a DIS Production of Za

M. Gómez-Bock, W. Gonzalez, L. López Lozano, S. Rosado-Navarro and A. Rosado

KEYWORDS

Bosonic Production, Deep Inelastic Scattering, Momentum Transferred, Parton Distribution Function, Parton Model

PUBLISHED DATE August 6, 2018
PUBLISHER The Author(s) 2018. This article is published with open access at www.chitkara.edu.in/publications.
ABSTRACT

We discuss the Z-production in a DIS (Deep Inelastic Scattering) process e + p → e + Z + X using the Parton Model, within the context of the Standard Model. In contrast with deep inelastic eP-scattering (e + p → e + X), where the choice of ?Q2 , as the transferred momentum squared, is unambiguous; whereas in the case of boson production , the transferred momentum squared, at quark level, depends on the reaction mechanism (where is the EW interaction taking place). We suggest a proposal based on kinematics of the process considered and the usual criterion for ?Q 2 , which leads to a simple and practical prescription to calculate Z-production via ep-DIS. We also introduce different options in order to perform the convolution of the parton distribution functions (PDFs) and the scattering amplitude of the quark processes. Our aim in this work is to analyze and show how large could be the dependence of the total cross section rates on different possible prescriptions used for the identification of the scale energy parameter ?Q 2 . We present results for the total cross section as a function of the total energy s of the system ep, in the range 300< s ≤1300 GeV .

Page(s) 27-32
URL http://dspace.chitkara.edu.in/jspui/bitstream/123456789/735/1/05_JNP.pdf
ISSN Print : 2321-8649, Online : 2321-9289
DOI 10.15415/jnp.2018.61005
REFERENCES
  • C. Patrignani et al. (Particle Data Group), Chin Phys. C, 40, 100001 (2016). https://doi.org/10.1088/1674-1137/40/10/100001
  • S. L. Glashow, Nucl. Phys. 22, 579 (1961); S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967); A. Salam, Proc. 8th NOBEL Symposium, ed. N. Svartholm p.367, Almqvist and Wiksell, Stockholm, (1968). https://doi.org/10.1016/0029-5582(61)90469-2, https://doi.org/10.1103/PhysRevLett.19.1264
  • J. D. Bjorken and E. A. Paschos, Phys. Rev. 185, 1875 (1969). https://doi.org/10.1103/PhysRev.185.1975
  • R. P. Feynman: Photon-hadron interactions, Reading: Benjamin (1972).
  • R. P. Feynman, Third International Conference at Stony Brook, N. Y. Gordon & Breach , pp 237–249 (1969).
  • J. Pumplin, D. R Stump, J. Huston, H. L. Lai, P. M. Nadolsky and W. K. Tung, JHEP 0207, 012 (2001).
  • D. Stump, J. Huston, J. Pumplin, W. K. Tung, H. L. Lai, S. Kuhlmann and J. F. Owens, JHEP 0310, 046 (2003).
  • M. Bohm and A. Rosado, Z. Phys. C 34, 117 (1987). https://doi.org/10.1007/BF01561123
  • E. Byckling and Kajantie: Particle hinematics, New York: Willey (1972).
  • C. H. Llewellyn-Smith and B. H. Wiik, DESY-77-38.
  • G. Altarelli, G. Martinelli, B. Mele and R. Ruckl, Nucl. Phys. B 262, 204 (1985). Doi:10.1016/0550- 3213(85)90284-6. https://doi.org/10.1016/0550-3213(85)90284-6
  • P. Salati and J. C. Wallet, Z. Phys. C. 16, 155 (1982). doi: 10.1007/BF01572266. https://doi.org/10.1007/BF01572266