J. Nucl. Phy. Mat. Sci. Rad. A.

Effect of the Target Size in the Calculation of the Energy Deposited Using PENELOPE Code

B. Leal-Acevedo, P.G. Reyes-Romero, F. Castillo and I. Gamboadebuen

KEYWORDS

Specific energy; Linear energy, PENELOPE code

PUBLISHED DATE August 6, 2018
PUBLISHER The Author(s) 2018. This article is published with open access at www.chitkara.edu.in/publications.
ABSTRACT

The specific and linear energy was calculated in target sizes of 10 μm, 5 μm, 1 μm, 60 nm, 40nm and 20 nm by taking into account the contribution of the primary photon beams and the electrons generated by them in LiF: Mg, Ti (TLD-100). The simulations were carried out by the code PENELOPE 2011. Using different histories of primary particles, for each energy beams the mean deposited energy is the same, but to achieve a statistical deviation lower than 1% the value of 108 was fixed. We find that setting the values C1 = 0.1 C2 = 0.1 and Wcc = Wcr = 50 eV the time of simulation decreases around the 25%. The uncertainties (1 SD) in the specific energy increases with energy for all target sizes and decreases with target size, with values from 1.7 to 94% for 20 nm and between 0.1 and 0.8% for 10 μm. As expected, the specific and linear energies decrease with target size but not in a geometrical behavior.

Page(s) 67-70
URL http://dspace.chitkara.edu.in/jspui/bitstream/123456789/741/1/011_JNP.pdf
ISSN Print : 2321-8649, Online : 2321-9289
DOI 10.15415/jnp.2018.61011
REFERENCES
  • M. Bernal and J. Liendo , Med Phys 36, 620–625, (2009). https://doi.org/10.1118/1.3056457
  • A. Kellerer and D. Chmelevsky, Concepts of microdosimetry, I. Quantities. Radiat Environ Biophys 12, 61–69, (1975). https://doi.org/10.1007/BF02339810
  • A. Kellerer and D. Chmelevsky, Radiat Environ Biophys 12, 205–216 (1975). https://doi.org/10.1007/BF01327348
  • P. Olko, Radiat Prot Dosimetry 65, 151–158, (1996). https://doi.org/10.1093/oxfordjournals.rpd.a031610
  • P. Olko, Henryk Niewodniczaski Institute of Nuclear Physics. (2002).
  • P. Olko, P. Bilski, M. Budzanowski, L. Czopyk, J. Swakon, et al., Radiat Prot Dosimetry 122, 378–381, (2006). https://doi.org/10.1093/rpd/ncl46
  • H. Rossi, Radiat Environ Biophys 17, 29–40, (1979). https://doi.org/10.1007/BF01323118
  • F. Salvat, J. M. Fernández-Varea and J. Sempau, PENELOPE-2011: A Code System for Monte Carlo Simulation of Electron and Photon Transport (No. NEA/NSC/DOC (2011 5). In Nuclear Energy Agency. Workshop Proceedings. Barcelona, (2011).
  • B. Scott and H. Schöllnberger, Radiat Prot Dosimetry 91, 377–384, (2000). https://doi.org/10.1093/oxfordjournals.rpd.a033247
  • F. Villegas, N. Tilly and A. Ahnesjö, Phys Med Biol 58, 6149–6162, (2013).
  • F. Villegas, N. Tilly, G. Bäckström, A. Ahnesjö, Phys Med Biol 59, 5531–5543, (2014). https://doi.org/10.1088/0031-9155/59/18/5531