J. Nucl. Phy. Mat. Sci. Rad. A.

Dose Calibration and Track Diameter Distribution for 241Am-Be Neutron Source, Using CR-39 Nuclear Track Methodology

J. S. Bogard, J. I. Golzarri, G. Espinosa


Americium beryllium neutron source, track density imaging, CR-39 Nuclear Track, chemical etching process

PUBLISHED DATE August 6, 2018
PUBLISHER The Author(s) 2018. This article is published with open access at www.chitkara.edu.in/publications.

In neutron detection, the more common method is using electronic instrumentation associate with Bonner spheres, however, currently the Nuclear Tracks Methodology (NTM) is coming popular because of the simplicity, flexibility in size of the detector, no requirement for sophisticated instrumentation and installation, and low cost. In this work, a preliminary result of the dose calibration and track diameter distribution of Americium-Beryllium (241Am-Be) source using Nuclear Track Methodology is presented. As material detector, CR-39 polycarbonate, cut in 1.8 × 0.9 cm2 chips was chosen, and two step chemical etchings after neutron exposure was used to develop the tracks. The irradiations were made in environmental normal conditions, in the ORNL neutron calibration facilities. The CR-39 chips were placed in a phantom, with 3mm plastic (Lexan) sheet in between the source and detectors to increase the proton generation. The total track density and track diameter distribution was performing in a Counting and Analysis Digital Image System (CADIS), developed at the Institute of Physics of the University of Mexico UNAM. The results are compared with a standard survey instrument and energy reference spectra of the International Atomic Energy Agency (IAEA).

Page(s) 77-80
URL http://dspace.chitkara.edu.in/jspui/bitstream/123456789/743/1/013_JNP.pdf
ISSN Print : 2321-8649, Online : 2321-9289
DOI 10.15415/jnp.2018.61013
  • A. M. Abdalla, O. Ashraf, Y. S. Rammah, A. H. Ashry, M. Eisa, et al., Radiation Physics and Chemistry, 108, 24–28 (2015). https://doi.org/10.1016/j.radphyschem.2014.11.006
  • M. E. Anderson and R. A. Neff, Nuclear Instruments and Methods, 99, 231–235 (1972). https://doi.org/10.1016/0029-554X(72)90781-1
  • K. Becker, Solid State Dosimetry. CRC Press (1973).
  • L. W. Brackenbenbush, D. E. Hadlock, N. M. A. Parkhurst and L. G. Faust, Nuclear Tracks and Radiation Measurements, 8, 313–315 (1984). https://doi.org/10.1016/0735-245X(84)90111-X
  • F. Castillo, G. Espinosa, J. I. Golzarri, D. Osorio, J. Rangel, et al., Radiation Measurements, 50, 71–73 (2013). https://doi.org/10.1016/j.radmeas.2012.09.007
  • S. Cavallaro, Review of Scientific Instrumentations, 86, 036103 (2015). https://doi.org/10.1063/1.4915502
  • F. D’Errico, D. A. A. Vasconcelos, R. Ciolini and E. Hulber, Radiation Measurements, 106, 607–611 (2017).
  • F. D’Errico M. Weiss, M. Luszik-Bhadra, M. Matzke, L. Bernardi, et al., Radiation Measurements, 28, 823–830 (1997). https://doi.org/10.1016/S1350-4487(97)00191-1
  • A. R. El-Sersy, Nuclear Instruments and Methods in Physics Research, A 618, 234–238 (2010). https://doi.org/10.1016/j.nima.2010.02.103
  • A. R. El-Sersy, N. E. Khaled and S. A. Eman, Nuclear Instruments and Methods in Physics Research, B215, 443–448 (2004). https://doi.org/10.1016/j.nimb.2003.08.035
  • G. Espinosa, Trazas Nucleares en Solidos, UNAM, Mexico City, Mexico (1994).
  • G. Espinosa, R. B. Gammage, K. E. Meyer and C. S. Dudney, Radiation Protection Dosimetry, 66, 363–366 (1996). https://doi.org/10.1093/oxfordjournals.rpd.a031754
  • R. L. Fleisher, P. B. Price and R. M. Walker, Nuclear Tracks in Solids: Principles and Application. University of California Press.(1975).
  • R. B. Gammage and G. Espinosa, Radiation Measurements, 28, 835–838 (1997). https://doi.org/10.1016/S1350-4487(97)00193-5
  • J. A. B. Gibson and E. Piesch, Technical Reports Series No. 252, International Atomic Energy Agency, Vienna (1985).
  • D. E. Hankins and J. Westermark, Radiation Protection Dosimetry, 20, 109–112 (1987). https://doi.org/10.1093/oxfordjournals.rpd.a080015
  • J. R. Harvey, R. J. Tanner, W. G. Alberts, D. T. Bartlett, E. K. A. Piesch, et al., Radiation Protection Dosimetry, 77, 267–304 (1998). https://doi.org/10.1093/oxfordjournals.rpd.a032322
  • Handbook on Nuclear Data for Borehole Logging and Mineral Analysis. Technical Report Series No. 357, International Atomic Energy Agency (IAEA), Vienna. (1993).
  • International Atomic Energy Agency. IAEA Technical Reports Series No. 403. Supplement to Technical Reports Series No. 318. Vienna, Austria. (2001).
  • M. Izerrouken, J. Skvarc and R. Ilic, Radiation Measurements, 37, 21–24 (2003). https://doi.org/10.1016/S1350-4487(02)00131-2
  • J. Jakes and H. Schraube, Radiation Protection Dosimetry, 70(1-4) 133–138 (1997). https://doi.org/10.1093/oxfordjournals.rpd.a031928
  • G. C. Lowenthal and P. L. Airey, Practical applications of radioactivity and nuclear radiations. Cambridge University Press, England. (2001). https://doi.org/10.1017/CBO9780511535376
  • B. Milenkovic, N. Stevanovic, D. Nikezic and D. Kosutic, Applied Radiation and Isotopes, 90, 225–228 (2014). https://doi.org/10.1016/j.apradiso.2014.04.008
  • G. S. Sahoo, S. P. Tripathy, S. Paul, S. C. Sharma, D. S. Joshi, et al., Applied Radiation and Isotopes, 101, 114–121 (2015). https://doi.org/10.1016/j.apradiso.2015.04.002
  • K. Turek and G. Dajko, Radiation Measurements, 34, 625–628 (2001). https://doi.org/10.1016/S1350-4487(01)00242-6