J. Nucl. Phy. Mat. Sci. Rad. A.

Agent Based Model of the Cytosine Radiation Induced Reaction

A L Rivera, S Ramos-Beltran, A Paredes-Arriaga and A Negron-Mendoza


Radiation induced chemical reactions; Cytosine; Kinetics of reactions; Agent-based model.

PUBLISHED DATE August 6, 2018
PUBLISHER The Author(s) 2018. This article is published with open access at www.chitkara.edu.in/publications.

The stability of cytosine in aqueous solution was studied in the laboratory, simulating prebiotic conditions and using gamma radiation as an energy source, to describe cytosine behavior under radiation. For a better understanding of the radiation-induced processes, we proposed a mathematical model that considers chemical reactions as nonlinear ordinary differential equations. The radiolysis can be computationally simulated by an agent-based model, wherein each chemical species involved is considered to be an agent that can interact with other species with known reaction rates. The radiation is contemplated as a factor that promotes product formation/destruction, and the temperature determines the diffusion speed of the agents. With this model, we reproduce the changes in cytosine concentration obtained in the laboratory under different irradiation conditions.

Page(s) 93-97
URL http://dspace.chitkara.edu.in/jspui/bitstream/123456789/746/1/16_JNP.pdf
ISSN Print : 2321-8649, Online : 2321-9289
DOI 10.15415/jnp.2018.61016
  • M. Colín-García, A. Negrón-Mendoza, S. Ramos- Bernal, International Journal of Astrobiology, 9, 279– 288, (2009). http://dx.doi.org/10.1089/ast.2006.0117
  • H. G. Hill, J. A. Nuth, Astrobiology, 3(2), 291–304, (2003). https://doi.org/10.1089/153110703769016389
  • A. Negrón-Mendoza, C. Ponnamperuma, Photochemistry and Photobiology, 36(5), 595–597, (1982). https://doi.org/10.1111/j.1751-1097.1982.tb04421.x
  • A. Negrón-Mendoza, G. Albarran, S. Ramos, E. Chacon, Journal of Biological Physics, 20(1), 71–76, (1995). http:/dx.doi.org/10.1007/BF00700422.
  • S. Castillo, A. Negrón-Mendoza, Z. D. Draganic, I. G. Draganic, Radiation Physics and Chemistry, 26, 437–443, (1985). https://doi.org/10.1016/0146-5724(85)90232-8
  • J. Cruz-Casta-eda, A. Negrón-Mendoza, D. Frías, M. Colín-García, A. Heredia, et al., Journal of Radioanalytical and Nuclear Chemistry, 304(1), 219–225, (2015). https://doi.org/10.1007/s10967-014-3711-z
  • S. L. Miller, Science, 117(3046), 528–529, (1953). https://doi.org/10.1126/science.117.3046.528
  • W. Gilbert, Nature, 319(6055), 618, (1986). https://doi.org/10.1038/319618a0
  • G. Sanchez-Mejorada, D. Frias, A. Negrón-Mendoza, S. Ramos-Bernal, Radiation Measurements, 43(2), 287–290, (2008). https://doi.org/10.1016/j.radmeas.2007.11.038
  • V. P. Zhdanov, Surface Science Reports, 45(7), 231–326, (2002). https://doi.org/10.1016/S0167-5729(01)00023-1
  • A. L. Rivera, S. Ramos-Bernal, A. Negrón-Mendoza, J. Nucl. Phys. Mat. Sci. Rad. A., 5(1), 15–23, (2017). https://doi.org/10.15415/jnp.2017.51002
  • A. L. Rivera, S. Ramos-Bernal, A. Negrón-Mendoza, J. Nucl. Phys. Mat. Sci. Rad. A., 4(1), 149–157, (2016). https://doi.org/10.15415/jnp.2016.41015
  • A. A. Berryman, Ecology, 75, 1530–1535, (1992). https://doi.org/10.2307/1940005
  • A. Paredes Arriaga, Estabilidad de la guanina y citosinaendisoluciónacuosa y suspensión con Montmorillonitasódica: simulaciones de charcasen la tierraprimitive (Stability of guanine and cytosine in aqueous solution and suspension with sodium Montmorillonite: simulations of ponds in the primitive land). Thesis, Universidad Nacional Autónoma de México, Mexico (2018).
  • A. L. Meléndez-López, S. Ramos-Bernal, M. L. Ramírez- Vázquez, AIP Conference Proceedings 1607, 111, (2014). https://doi.org/10.1063/1.4890710
  • L. Lang, Absorption spectra in the ultraviolet and visible regions, Vol. 1 (Academic Press, New York, 1961).