J. Nucl. Phy. Mat. Sci. Rad. A.

Agent Based Model of the Cytosine Radiation Induced Reaction

A L Rivera, S Ramos-Beltran, A Paredes-Arriaga and A Negron-Mendoza

KEYWORDS

Radiation induced chemical reactions; Cytosine; Kinetics of reactions; Agent-based model.

PUBLISHED DATE August 6, 2018
PUBLISHER The Author(s) 2018. This article is published with open access at www.chitkara.edu.in/publications.
ABSTRACT

The stability of cytosine in aqueous solution was studied in the laboratory, simulating prebiotic conditions and using gamma radiation as an energy source, to describe cytosine behavior under radiation. For a better understanding of the radiation-induced processes, we proposed a mathematical model that considers chemical reactions as nonlinear ordinary differential equations. The radiolysis can be computationally simulated by an agent-based model, wherein each chemical species involved is considered to be an agent that can interact with other species with known reaction rates. The radiation is contemplated as a factor that promotes product formation/destruction, and the temperature determines the diffusion speed of the agents. With this model, we reproduce the changes in cytosine concentration obtained in the laboratory under different irradiation conditions.

Page(s) 93-97
URL http://dspace.chitkara.edu.in/jspui/bitstream/123456789/746/1/16_JNP.pdf
ISSN Print : 2321-8649, Online : 2321-9289
DOI 10.15415/jnp.2018.61016
REFERENCES
  • M. Colín-García, A. Negrón-Mendoza, S. Ramos- Bernal, International Journal of Astrobiology, 9, 279– 288, (2009). http://dx.doi.org/10.1089/ast.2006.0117
  • H. G. Hill, J. A. Nuth, Astrobiology, 3(2), 291–304, (2003). https://doi.org/10.1089/153110703769016389
  • A. Negrón-Mendoza, C. Ponnamperuma, Photochemistry and Photobiology, 36(5), 595–597, (1982). https://doi.org/10.1111/j.1751-1097.1982.tb04421.x
  • A. Negrón-Mendoza, G. Albarran, S. Ramos, E. Chacon, Journal of Biological Physics, 20(1), 71–76, (1995). http:/dx.doi.org/10.1007/BF00700422.
  • S. Castillo, A. Negrón-Mendoza, Z. D. Draganic, I. G. Draganic, Radiation Physics and Chemistry, 26, 437–443, (1985). https://doi.org/10.1016/0146-5724(85)90232-8
  • J. Cruz-Casta-eda, A. Negrón-Mendoza, D. Frías, M. Colín-García, A. Heredia, et al., Journal of Radioanalytical and Nuclear Chemistry, 304(1), 219–225, (2015). https://doi.org/10.1007/s10967-014-3711-z
  • S. L. Miller, Science, 117(3046), 528–529, (1953). https://doi.org/10.1126/science.117.3046.528
  • W. Gilbert, Nature, 319(6055), 618, (1986). https://doi.org/10.1038/319618a0
  • G. Sanchez-Mejorada, D. Frias, A. Negrón-Mendoza, S. Ramos-Bernal, Radiation Measurements, 43(2), 287–290, (2008). https://doi.org/10.1016/j.radmeas.2007.11.038
  • V. P. Zhdanov, Surface Science Reports, 45(7), 231–326, (2002). https://doi.org/10.1016/S0167-5729(01)00023-1
  • A. L. Rivera, S. Ramos-Bernal, A. Negrón-Mendoza, J. Nucl. Phys. Mat. Sci. Rad. A., 5(1), 15–23, (2017). https://doi.org/10.15415/jnp.2017.51002
  • A. L. Rivera, S. Ramos-Bernal, A. Negrón-Mendoza, J. Nucl. Phys. Mat. Sci. Rad. A., 4(1), 149–157, (2016). https://doi.org/10.15415/jnp.2016.41015
  • A. A. Berryman, Ecology, 75, 1530–1535, (1992). https://doi.org/10.2307/1940005
  • A. Paredes Arriaga, Estabilidad de la guanina y citosinaendisoluciónacuosa y suspensión con Montmorillonitasódica: simulaciones de charcasen la tierraprimitive (Stability of guanine and cytosine in aqueous solution and suspension with sodium Montmorillonite: simulations of ponds in the primitive land). Thesis, Universidad Nacional Autónoma de México, Mexico (2018).
  • A. L. Meléndez-López, S. Ramos-Bernal, M. L. Ramírez- Vázquez, AIP Conference Proceedings 1607, 111, (2014). https://doi.org/10.1063/1.4890710
  • L. Lang, Absorption spectra in the ultraviolet and visible regions, Vol. 1 (Academic Press, New York, 1961).