

Journal of Nuclear Physics, Material Sciences, Radiation and Applications Journal homepage: https://jnp.chitkara.edu.in/

On the Role of Large Nuclear Gravity in Understanding Strong Coupling Constant, Nuclear Stability Range, Binding Energy of Isotopes and Magic proton numbers – A Critical Review

*U.V.S. Seshavatharam¹ and S. Lakshminarayana²

¹Honorary faculty, I-SERVE, Survey no-42, Hitech city, Hyderabad, Telangana-500001, India ²Dept. of Nuclear Physics, Andhra University, Visakhapatnam, Andhra Pradesh-530003, India

*Email: seshavatharam.uvs@gmail.com

ARTICLE INFORMATION

Received: January 27, 2019 Revised: February 14, 2019 Accepted: February 16, 2019 Published online: February 26, 2019

Keywords:

Strong nuclear gravity, Nuclear elementary charge, Strong coupling constant, Nuclear stability range, Binding energy of isotopes, Magic proton numbers

DOI: 10.15415/jnp.2019.62024

1. Introduction

With reference to 'Stropto (nuclear) gravity' [1,20], if $G_f \approx 10^{38} G_N$ and with reference to the recent symposium proceedings and journal publications [1,1,37], we try to refine our properties concretes with the following three assumptions for an effect of isotope and magic proton number and possible reference of the statement of the sta

$$G_f = \sum_{e=m_p}^{4} \sum_{e=0}^{e_0} h^2 c^2 m_e \simeq 3.329561 \times 10^{28} \text{ m}^3 \text{kg}^{-1} \text{sec}^{-2}.$$

2. Assumptions

1) Nuclear charge radius can be expressed as,

 $R_0 \cong \frac{2G_s m_p}{c^2} \cong 1.23929083 \text{ fm}$

2) Strong coupling constant can be expressed as,

ABSTRACT

tion12

an in-denth

scussion.

With reference to our earlier published view large nuclear al constant G_{s} , nuclear \cong $(e/e_s)^{ imes}$, \mathbb{R} Istan as paper, we present simple elementary charge e_s and strong coupling relations for nuclear stability range, binding energy sotopes and magic proton numbers. Even though 'speculative' in nature, prov concepts are sin to understand, easy to implement, result oriented, effective and unified. proposed model seems it an across the Planck scale and nuclear scale and can be called as SPA nodel (STRANGE* physics of atomic nucleus). able mass number can be estimated with $A \cong \left| Z + \sqrt{\left(\frac{1}{\alpha} \right) \pm 1} \right|^2$ Summary: Probable range of where $x \cong 1.2$ for $Z \approx (3 \text{ to } 1)$ and $x \cong 1.1$ for $Z \ge 100$. A_s can also be expressed as, re $k \cong 4\pi$ $e^2 G_m^3 \cong 0.006333$. Energy coefficient being $A \cong 2Z + kZ^2$ $\left[e^{2}/8\pi\varepsilon\right]$ (G m MeV, for $Z \approx (5 \text{ to } 118)$, nuclear binding energy can be `)[≈ understood/fitted w $B_{A} \cong \{A_{s} - [(kA_{s}Z/2.531) + 3.531]\} \times 10.06 \text{ MeV} \text{ where}$ rms $(m_s) \cong 2.531$. By considering a third term of the form $\left| \left(A_s - A \right)^2 / A_s \right|$, $(m_{n} - n)$ of Z can be fitted approximately. It needs further investigation. See inding en gy of isoto

$$\alpha_s \cong \left(\frac{\hbar c}{G_s m_p^2}\right)^2 \cong 0.1151937353$$

3) There exists a nuclear elementary charge,

$$e_s \cong \frac{e}{\sqrt{\alpha_s}} \cong \left(\frac{G_s m_p^2}{\hbar c}\right) e \cong 4.720586027 \times 10^{-19} \text{ C}$$

3. Semi Empirical Relations and Applications

1) Proton magnetic moment can be expressed as

$$\mu_p \cong \frac{e_s \hbar}{2m_p} \cong \frac{eG_s m_p}{2c} \cong 1.488142 \times 10^{-26} \text{ J.T}^{-1}$$

2) Ignoring the negative sign, neutron magnetic moment can be expressed as

$$\mu_n \simeq \frac{(e_s - e)\hbar}{2m_n} \simeq 9.817102 \times 10^{-27} \, \mathrm{J.T^{-1}}.$$

3) Nuclear unit radius can be expressed as,

$$R_0 \cong \frac{2G_s m_p}{c^2} \cong \left(\frac{e_s}{e}\right) \left\{ \frac{\hbar}{m_p c} + \frac{\hbar}{m_n c} \right\}$$

4) Root mean square nuclear charge radii can be expressed as,

$$R_{(Z,A)} \cong \left\{ Z^{1/3} + \left(\sqrt{Z(A-Z)} \right)^{1/3} \right\} \left(\frac{G_s m_p}{c^2} \right)$$

5) Nuclear potential energy can be understood with,

$$\cong \frac{e_s^2}{4\pi\varepsilon_0 \left(G_s m_p / c^2\right)} \cong 20.1734 \text{ MeV}$$

6) Nuclear binding energy can be understood with,

$$\frac{e^2 G_s m_p^3}{8\pi\varepsilon_0 \hbar^2} \cong \frac{e_s e}{8\pi\varepsilon_0 \left(\hbar/m_p c\right)} \cong \frac{e_s^2}{8\pi\varepsilon_0 \left(G_s m_p / c^2\right)}$$

7) With reference to $(\hbar/2)$, a useful quantum energy constant can be expressed as,

$$E_{(\hbar/2)} \cong \left(\frac{e^2 G_s m_p^3}{4\pi\varepsilon_0 \left(\hbar/2\right)^2}\right) \cong 80.6934 \text{ MeV}$$

- 8) Close to magic and semi magic proton numbers, nuclear binding energy seems to approach $\left[2.531\left(n+\frac{1}{2}\right)\right]^2 10.0 \text{ MeV}$ where n = 0,1,2,3,... and $\left(m_n m_p/m_e\right) = 2.531.$
- 9) Characteristic melting temperature associated with proton can be expressed as,

$$T_{proton} \cong \frac{\hbar c^3}{8\pi k_B G_s m_p} \cong 0.15$$

10) Characteristic nuclear neuro mass units [3] can be expressed as, $\sqrt{\frac{\hbar c}{G_s}} \simeq 10.62$, LeV/c^2 . It can loo be considered as a characteristic dark patter constituent

Κ

[13]. See relative (26) and Table 8 of section-12 for the estimated by a baryon mass spectrum.

4. Neut proton lass l'aference

Nev on-proto mass difference can be understood with:

$$\frac{1}{n} \frac{2}{2} \frac{m_p c}{2} \cong \ln \sqrt{\frac{E_{(\hbar/2)}}{m_e c^2}} \cong \ln \sqrt{\frac{4e^2 G_s m_p^3}{4\pi \varepsilon_0 \hbar^2 m_e c^2}} \quad (4)$$

5. Neutron Life Time

Neutron life time t_n can be understood with the following relation:

$$t_n \cong \exp\left(\frac{E_{(\hbar/2)}}{\left(m_n - m_p\right)c^2}\right) \times \left(\frac{\hbar}{m_n c^2}\right) \cong 877.3 \text{ sec}$$
(5)

This value can be compared with recommended value of $(878.5\pm0.8)\,\text{sec.}$

6. Understanding Proton-neutron Stability

Let,
$$\left(\frac{m_e c^2}{E_{(\hbar/2)}}\right) \cong \left(\frac{4\pi\varepsilon_0 \hbar^2 m_e c^2}{4e^2 G_s m_p^3}\right) \cong k \cong 0.0063326$$
 (6)
Quantitatively, we noticed that,
$$\frac{e_s^2}{4\pi\varepsilon_0 G_s m_p m_e} \cong 4\pi \times \frac{1}{4k}$$
(7)

The new factor cheeds as ear interpretation and we are working on the for its scope and chaticability. It can be considered as a result oriented number connected with nuclear stability and pinding energy.

Laste mass nume A_s of Z can be estimated with the owing simple relations [38],

$$\cong (N_s + Z) \cong 2Z + kZ^2 \cong 2Z + 0.0063326 (Z)^2 \quad (8)$$

$$= \left[Z + \sqrt{(1/\alpha_s)}\right]^{1.2} \cong \left[Z + 2.9463\right]^{1.2}$$
(9)

where $(e/e_s)(1/k)^{1/4} \cong (\alpha_s)^{1/2} (1/k)^{1/4} \cong 1.2$. It can be called as 'power factor of stability'.

Proton number Z associated with stable A_s can be estimated with the following simple relations,

$$Z \cong \frac{\sqrt{1 + kA_s} - 1}{k} \quad \text{Or} \quad Z \cong \frac{A_s}{1 + \sqrt{1 + kA_s}} \qquad (10)$$

7. Understanding Proton-neutron Stability Range

Considering relation (8), it seems possible to find the best possible range of A_{c} . We noticed that,

Lower stable A_s can be estimated with,

$$(A_s)_{low} \cong \left[Z + \left(\sqrt{(1/\alpha_s)} - 1\right)\right]^{1.2} \cong \left[Z + 1.9463\right]^{1.2}$$
 (12)

Upper stable A_s can be estimated with,

$$A_s \Big|_{up} \cong \Big[Z + \Big(\sqrt{(1/\alpha_s)} + 1 \Big) \Big]^{1.2} \cong \big[Z + 3.9463 \big]^{1.2}$$
 (13)

90 to 96

92 to 100

95 to 99

96 to 106

99 to 105

100 to 110

105 to 111

13,115

Considering a factor of 1.19 in place of 1.2, stable mass numbers of super heavy elements can be fitted. For Z=116, estimated stable mass number range seems to be 292 to 298 and its experimental mass range is 291 to 294 [39]. See Table 2 for a comparison.

Table 1: Estimated range of stable mass numbers for Z=3 to 100 with a power factor of 1.20

with a power factor of 1.20					50	114	117	120	112 to 126
Z	(A.).	(A.)	(A.)	Main Isotope range	51	117	120	122	21 to 125
2	-S' low	S' mean	10	(to 7	52	120	122	.25	1. to 130
5	0	0	10	7 ± 10	53	122	125	128	123 37
4 5	0	10	14	/ 10 10	54	125	128	12	124 to 1,6
) (10	14	14	10 to 11	55	128	.31	53	137 o 137
0	12	14	10	11 to 14	56	131	133		0 to 138
/	14	10	18	15 to 15	57	12	136	135	137 to 139
0	10	18	20	10 to 18	58	1.56		141	134 to 144
9	18	20	22	18 to 19	59	139	141	144	141 to 143
10	20	22	24	20 to 22		141	144	147	142 to 150
11	22	24	26	22 to 24	1	144	147	150	145 to 147
12	24	26	28	24 to 26		147	150	152	144 to 154
15	26	28	30 22	26 to 2/	6.	150	152	155	150 to 155
14	28	30	32	28 to 32	64		155	158	148 to 160
15	30	32	34	31 to 33	15	155	158	161	157 to 159
16	32	34	36	32 to 36	66	158	161	164	154 to 164
1/	34	36	38	35 to 3/	67	161	164	166	163 to 167
18	36	38	41	36 to	68	164	166	169	160 to 172
19	38	41	43	3 3 41	69	166	169	172	167 to 171
20	41	43	45	40	70	169	172	175	166 to 177
21	43	45	47	44 to 4	71	172	175	178	173 to 176
22	45	4/		46 to 50	72	175	178	181	172 to 182
23	47	50	52	48 to 51	73	178	181	183	177 to 183
24	50	52	54	to 54	74	181	183	186	180 to 186
25	52	2	57	52 55	75	183	186	189	185,187
26	54		2	54 to 60	76	186	189	192	184 to 194
27	57		61	56 to 60	77	189	192	195	188 to 194
28	59	61	64	58 to 64	78	192	195	198	190 to 198
29		64	67	63 to 67	79	195	198	201	195 to 199
30	64	66	9	64 to 72	80	198	201	204	194 to 204
31	\$6		71	66 to 73	81	201	204	207	203 to 205
32		71	74	68 to 76	82	204	207	209	202 to 214
33	71	74	76	73 to 75	83	207	209	212	207 to 210
34	74	76	79	72 to 82	84	209	212	215	208 to 210
35	76	79	81	79,81	85	212	215	218	209 to 211
36	79	81	84	78 to 86	86	215	218	221	218 to 224
37	81	84	86	83 to 87	87	218	221	224	221 to 223
38	84	86	89	82 to 88	88	221	224	227	223 to 228
39	86	89	91	87 to 91	89	224	227	230	225 to 227
40	89	91	94	88 to 96	0)		/	_00	,

90	227	230	233	227 to 234	
91	230	233	236	229 to 234	
92	233	236	239	232 to 238	
93	236	239	242	235 to 239	
94	239	242	245	238 to 244	
95	242	245	248	241 to 243	
96	245	248	251	242 to 250	
97	248	251	254	245 to 249	
98	251	254	257	248 to 254	
99	254	257	260	252 to 255	
100	257	260	263	252 to 257	

Data has been taken from https://en.wikipedia.org/wiki/Isotope

Table 2: Estimated range of stable mass numbers for Z=101 to 118with a power factor of 1.19

Ζ	$(A_S)_{low}$	$(A_s)_{mean}$	$(A_s)_{up}$	Current synthetic isotopes range
101	248	251	254	257 to 260
102	251	254	257	253 to 259
103	254	257	260	254 to 266
104	257	260	263	261 to 267
105	260	263	266	262 to 270
106	263	266	269	265 to 271
107	266	269	271	267 to 278
108	269	271	274	269 to 271
109	271	274	277	274 to 28
110	274	277	280	279 281
111	277	280	283	27 286
112	280	283	286	277 to
113	283	286	25	278 to 290
114	286	289	- 92	284 to 290
115	289	292	295	1 to 290
116	292	2	298	290 294
117	295	298	501	293, 294
118	298		304	294,295

8. Notelear handing Exargy Close to Stable Mass Number

Based on the new integrated model proposed by N. Ghahramany of [40,41],

$$B(Z,N) = \left\{ A - \left(\frac{\left(N^2 - Z^2\right) + \delta(N - Z)}{3Z} + 3 \right) \right\} \frac{m_n c^2}{\gamma}$$
(14)

where, $\gamma = \text{Adjusting coefficient} \approx (90 \text{ to } 100).$ if $N \neq Z$, $\delta(N-Z) = 0$ and if N = Z, $\delta(N-Z) = 1$. Readers are encouraged to see references there in [40,41] for derivation part. Point to be noted is that, close to the beta stability line, $\left[\frac{N^2 - Z^2}{3Z}\right]$ takes care of the combined effects of coulombic and asymmetric effects. In this context

effects of coulombic and asymmetric effects. In this context, we propose that,

$$\frac{m_n c^2}{\gamma} \cong \frac{m_n c^2}{(90 \text{ to } 100)} \cong \text{Constant}$$

$$\cong \frac{e_s^2}{8\pi\varepsilon_0 \left(G_s m_p / c^2\right)} \cong 0.09 \text{MeV}$$
(15)

Proceeding further, with the reference to relation (7) it is also possible to show that, $Z \cong (1 \text{ to } 83)$, can be to the beta stability line,

$$\left[\frac{N_s^2 - Z}{Z}\right] = \frac{V_s Z}{16}$$

$$\frac{Z^2}{3Z} \cong \frac{kA_sZ}{3} \tag{17}$$

haved on the above relations and close to the stable mass numbers of $(2 \approx 5 \text{ to } 118)$, with a common energy coefficiency 10.06 MeV, we propose two terms for fitting hunderstanding nuclear binding energy.

N

and be considered as,

$$Term_1 = A_s \times 10.06 \text{ MeV}$$
(18)

Second term helps in **decreasing** the binding energy and can be considered as,

Term_2 =
$$\left(\frac{kA_sZ}{2.531} + 3.531\right) \times 10.06 \text{ MeV}$$
 (19)

where
$$\begin{cases} \left(\frac{\left(m_{n}-m_{p}\right)c^{2}}{m_{e}c^{2}}\right) \cong \ln\left(\frac{1}{\sqrt{k}}\right) \cong 2.531\\ 3.531 \cong 1+2.531 \cong 1+\ln\left(\frac{1}{\sqrt{k}}\right) \end{cases}$$

Thus, binding energy can be fitted with,

$$B_{A_{s}} \cong \left\{ A_{s} - \left(\frac{kA_{s}Z}{2.531} + 3.531 \right) \right\} \times 10.06 \text{ MeV}$$
 (20)

See the following Figure 1. Dotted red curve plotted with relations (7) and (20) can be compared with the green curve plotted with the standard semi empirical mass formula (SEMF) [38,42].

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

70

73

75

78

80

83

85

88

90

93

95

98

100

103

105

Figure 1: Binding energy per nucleon close to stable mass numbers of Z = 5 to 118

For medium and heavy atomic nuclides, fit is excellent. It seems that some correction is required for light atoms. See T-11-2 f-• th d d

Table 3 for	the estimat	ed data	ined for light	t atoms. See	47		923.2	.2.7	-0.49
	the estimat	cu uata.			48	111	947.0	947.6	0.62
Table 3: Nu	uclear Bindin	g energy close	e to stable ma	ss numbers of	49	113	961.9	962.8	0.96
Z = 5 to 11	8				5	116	\$5.5	987.5	2.03
Proton	Mass	Estd. BE	SEMF BE	Error		118	1000.1	1000.2	0.16
number	number	(MeV)	(MeV)	(MeV)	2	121	1023.4	1024.6	1.22
5	10	63.8	62.3	-1.53		124	1046.5	1046.5	0.05
6	12	83.4	87.4	4.01	54		1060.8	1063.4	2.62
7	14	102.9	98.8	-4.04	55	129	1083.6	1085.1	1.47
8	16	122.2	123.2	1.03		132	1106.3	1108.7	2.38
9	19	151.3	148.9	-2.46	57	135	1128.9	1130.1	1.17
10	21	170.5	167.5	94	58	137	1142.7	1144.4	1.73
11	23	189.5	18		59	140	1165.0	1165.6	0.58
12	25	208.4	94.7		60	143	1187.1	1188.5	1.42
13	27	227.3	223.2	-4.04	61	146	1209.1	1209.3	0.23
14	2.9	246	241.6	35	62	148	1222.4	1225.3	2.91
15	31	2 10	211.0	-4.55	63	151	1244.1	1245.9	1.77
16	3/1	02.8	26	2.06	64	154	1265.6	1268.2	2.56
17	26	211.2	205 1	-2.00	65	157	1287.0	1288.4	1.41
1/	20	21	207.2	-0.18	66	160	1308.3	1310.4	2.16
10	28 40)∠/.∠	-2.52	67	162	1321.0	1322.1	1.14
19	40	54/./	41.5	-6.2/	68	165	1342.0	1343.9	1.94
20		5.4	3/1.6	-3.84	69	168	1362.8	1363.6	0.86
21	45	39	389.6	-3.80	70	171	1383.4	1385.1	1.64
22	47	411.3	407.5	-3.80	71	174	1404.0	1404.5	0.58
23	2	429.1	425.2	-3.85	72	177	1424.3	1425.7	1.34
24		456.2	454.6	-1.61	73	180	1444.5	1444.8	0.30
25	54	473.7	468.9	-4.85	74	183	1464.6	1465.7	1.06
26	56	491.2	489.6	-1.61	75	186	1484.5	1484.6	0.06
27	59	517.9	515.2	-2.72	76	189	1504.3	1505.1	0.82
28	61	535.1	532.5	-2.63	77	192	1523.9	1523.7	-0.14
29	63	552.3	549.7	-2.61	78	195	1543.3	1544.0	0.64
30	66	578.6	577.9	-0.67	79	198	1562.6	1562.4	-0.27
31	68	595.5	592.0	-3.52	80	201	1581.8	1582.3	0.54

-0.60

-1.60

-1.52

-2.56

-0.84

-0.69

1.80

.13

-0

0.0

1.52

0.38

0.62

0.26

611.7

636.6

653.3

677.9

697.0

721.3

737.6

s0.2

803.9

843.

861.2

884.4

89

761

612.3

638.2

654.8

680.4

696.8

722.2

738.3

763.4

779.3

804.1

819

\$59.7

89

.3

81	204	1600.8	1600.5	-0.33	1]	(kAZ)]	$\left[\left(A - A\right)^2\right]$		
82	207	1619.7	1620.2	0.51	$B_A \cong \{ A \}$	$A = \left \frac{\pi \pi m}{2.531} \right $	+3.531	$-\left \frac{\left(1-\frac{1}{3}\right)}{4}\right $	×10.06 MeV	
83	210	1638.4	1638.1	-0.29	(L	(2.55)	l)]			
84	213	1656.9	1657.5	0.58					(21)
85	216	1675.3	1675.2	-0.16						
86	219	1693.6	1694.3	0.76	See Figur	e 2 and Ta	ble 4 for the	e estimated iso	otopic binding	g
87	222	1711.7	1711.7	0.08	energy of	Z=50. Da	ashed red cu	rve plotted wit	th relations (7)
88	225	1729.6	1730.7	1.05	and (21) a	can be con	npared with	the green	lotted with	h
89	228	1747.4	1747.8	0.44	total bind	ling energy	y of Thomas	-Ferr model	[4]	
90	231	1765.0	1766.5	1.46	For 2	Z=50 and	A=100 to	1. with ref	erence p tota	1
91	234	1782.5	1783.5	0.93	bindinger	nergyofTh	iomas-Fermi	imoe [42], tł	nere is 1 mucl	n
92	238	1807.6	1808.5	0.90	more diff	erence in	the estir and	on of bhilling	ener When	n
93	241	1824.8	1825.2	0.44	(A > 130)), binding	ener seen	ns to be inc.	sir and when	n
94	244	1841.8	1843.4	1.56	(A > 170)), binding	en v seer	to be decrea	ng rapidly. I	t
95	247	1858.7	1859.9	1.17	needs fur	ther stuc	and n a	ient.		
96	250	1875.4	1877.7	2.36	See I	figur o t	o 10 for	estime d iso	otopic binding	g
97	254	1899.6	1898.9	-0.71	energies o	it i i	2, 42, 52, 62	\sim 52 and 9	2. Dashed red	1
98	257	1916.0	1916.5	0.54	curve ple	ed with	lations (/)) and (21) can	be compared	1
99	260	1932.2	1932.5	0.34	formula	green cu	ir plotted	i with the so	emi empirica	1
100	263	1948.3	1949.9	1.66	ie Jula.					
101	267	1971.7	1971.9	0.16	_ 1400					
102	270	1987.5	1989.1	1.56	1200		•			
103	273	2003.1	2004.6	1.54	1000					-
104	276	2018.6	2021.6	3.02	<u>60</u> 000					•
105	280	2041.3	2041.4	0.17	e 600					
106	283	2056.4	2058.1	1.74	₩ + 00					-
107	287	2078.7	2079.1	36	iji 200					
108	290	2093.5	2095	2.	Bi o					
109	293	2108.2	211	2,		040	4 9 0 4	00668	4 00 00 00 00	•
110	297	2130.0	.131.0	.01		10.10	112	13 13	4 4 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Ì
111	300	2144.3	2145.7	42			Mass nu	umbers of Z=5	50	
112	303	215	2161.7	3.						
113	307	21, 9.7	21.8	2.08	Figure 2:	Binding end	ergy of isotop	es of Z=50		
114	310	2193.6	21,	4.02	Table 4. B	inding on o	er of isotopo	a of 7 - 50		
115	314	221/	2216.0	1.53	Table 4: D	inding ener	gy of isotope	S 01 Z= 90		
116	317	2 1.9	2231.5	3.59	Proton	Mass	Estd. BE	Total BE	Error	
117	321	2248.4	2250.9	2.53	number	number	(MeV)	(MeV) [26]	(MeV)	
118	4	261.6	2266.3	4.69	50	100	822.4	826.0	3.6	
					50	101	833.9	837.2	3.3	
9. N. 1	ear leaf	Energy	of Isotop	es of Z	50	102	845.2	850.7	5.4	
We are	w king o	n understand	ling and e	stimating the	50	103	856.4	860.7	4.3	
binding e	eners f m	ass numbers a	bove and be	low the stable	50	104	867.3	873.1	5.8	

binding energy mass numbers above and below the stable mass numbers. With trial and error, we have developed a third term

 $\frac{\left(A_s - A\right)^2}{A_s} > 10.06$ MeV. Using this term, of the form approximately, it is possible to fit the binding energy of isotopes in following way.

50 109 919.6 923.5 3.9

105

106

107

108

50

50

50

50

878.1

888.8

899.2

909.5

882.7

894.6

903.5

914.9

4.6

5.8

4.3

5.5

pp.160

Figure 6: Binding energy of isotopes of Z=52

Figure 7: Binding energy of isotopes of Z=62

Figure 9: Binding energy of isotopes of Z=82

10. Understanding the Sinding mergy of Light Atom Nuclides

It is well callished pat, in light atomic nuclides, coulombic interview seems to path a key role in reducing the binding energy. Based on this context, starting from Z=2 to Z=30, use to stable mass numbers, binding energy can be pressed by the following relations.

$$\cong \left[A_{s} - A_{s}^{\frac{1}{3}} \right] (10.06 - 0.71) \text{ MeV}$$

$$\cong \left[A_{s} - A_{s}^{\frac{1}{3}} \right] 9.35 \text{ MeV}$$
(22)

See the following Table 6.

Table 6: Binding energy of Z = 2 to 30 based on coulombic correction

Proton number	Mass number	Est. BE (MeV)	SEMF BE (MeV) [38]	Error (MeV)
2	4	22.6	22.0	-0.5
3	6	39.1	26.9	-12.2
4	8	56.1	52.9	-3.2
5	10	73.4	62.3	-11.1
6	12	90.8	87.4	-3.4
7	14	108.4	98.8	-9.6
8	16	126.0	123.2	-2.8
9	19	152.7	148.9	-3.8
10	21	170.6	167.5	-3.0
11	23	188.5	186.1	-2.3
12	25	206.4	204.7	-1.7
13	27	224.4	223.2	-1.2
14	29	242.4	241.6	-0.8
15	31	260.5	260.0	-0.5
16	34	287.6	290.8	3.2
17	36	305.7	305.1	-0.7
18	38	323.9	327.2	3.4

Table

19	40	342.0	341.5	-0.5
20	43	369.3	371.6	2.3
21	45	387.5	389.6	2.1
22	47	405.7	407.5	1.8
23	49	423.9	425.2	1.3
24	52	451.3	454.6	3.3
25	54	469.6	468.9	-0.7
26	56	487.8	489.6	1.8
27	59	515.3	515.2	0.0
28	61	533.5	532.5	-1.0
29	63	551.8	549.7	-2.2
30	66	579.3	577.9	-1.4

11. Understanding Magic Proton Numbers

It may be noted that, the nuclear magic numbers, as we know in stable and naturally occurring nuclei, consist of two different series of numbers. The first series -2, 8, 20 is attributed to the harmonic-oscillator (HO) potential, while the second one -28, 50, 82 and 126 is due to the spin–orbit (SO) coupling force [43-46]. In this context, our bold idea is that, atoms are exceptionally stable when their nuclear binding energy approaches,

$$B_{A_s} \simeq \left[2.531 \left(n + \frac{1}{2} \right) \right]^2 10.06 \text{ MeV}$$

Based on point 5 of section-3, close to stable mass number of $Z \approx (2 \text{ to } 100)$, magnitude of nuclear bit for energy can be expressed by a relation of following orm.

$$B_{A_s} \approx \left\{ \left(Z - \sqrt{\ln(Z)} \right) \frac{e_s^2}{4\pi\varepsilon_0 \left(z - n_p/z^2 \right)} \right\} = 1006 \text{ MeV}$$
$$\approx \left[\left(Z - \sqrt{\ln(Z)} \right) * 2..12 \text{ MeV} \right] \pm 10.06 \text{ MeV}$$

where $A_s \approx Z + 0.0063326(Z)$

(24) See the following Figure 11 for the plotted (dotted) black curve company with SE. Signed curve.

Let M_n be a possible magic proton number. Considering relations (23) and (24), it is possible to develop a relation of the following form having a factor (1/2).

erstand the magic proton numbers

y	$\binom{n+1}{2}$	Round off $\left[3.203 \left(n + \frac{1}{2} \right)^2 + 1 \right]$	$M_{_{n}}$
	0	1	1,2
	0.5	2	2,4
	1	4	2,4,6
	1.5	8	6,8,10
	2	14	12,14,16
	2.5	21	20,21,22
	3	30	28,30,32
)	3.5	40	38,40,42
k	4	52	50,52,54
	4.5	66	64,66,68
	5	81	80,81,82
	5.5	98	96,98,100
	6	116	114,116,118
	6.5	136	134,136,138
	7	158	156,158,160
	7.5	181	180,181,182
	8	206	204,206,208

Figure 11: Nuclear Binding energy close to stable mass numbers of Z = 2 to 100

Proton number

12. Discussion

11) With reference to the proposed characteristic mass unit of $\sqrt{\hbar c/G_s} \cong 546.62 \text{ MeV}/c^2$, basic baryonic mass spectrum can be fitted with the following relation,

$$m_{Bar}c^2 \cong \left(\frac{n}{\alpha_s}\right)^{\frac{1}{4}} \sqrt{\frac{\hbar c^5}{G_s}} \cong \left(\frac{n}{\alpha_s}\right)^{\frac{1}{4}} 546.6 \,\mathrm{MeV}$$
 (26)

where n = 1, 2, 3, ...

See Table 8. For further details, readers are encouraged to see our published paper [33].

Table 8: Estimated basic baryons rest energy

n	Baryon rest energy (MeV)	n	Baryon rest energy (MeV)
1	938.3	11	1708.7
2	1115.8	12	1746.3
3	1234.8	13	1781.6
4	1326.9	14	1814.9
5	1403.0	15	1846.5
6	1468.5	16	1876.5
7	1526.1	17	1905.2
8	1578.0	18	1932.6
9	1625.1	19	1958.9
10	1668.5	20	1984.2

- So far no model could succeed in understanting nuclear binding energy with gravity [19]. It is not be confirmed from main stream literature [1-20].
- 3) So far no model could corress a specere implementing strong coupling constant a fow energy nuclear physics.
- So far no model could attempted understand nuclear stability and binding energy with a combined effects of strong nuclear gravity and strong hallear charge.
- 5) Understand nuclear binding energy with a single energy coefficient of magnitud $\frac{e^2}{8 M_0 (G_{s^*} / c^2)} = 0.09 \text{ MeV} \text{ is a challenging task}$
 - Id so far except Ghanramany et al, no one could an approximate of the second se
- 6) Estimation of nucleon stability range is simple in our model compared to SEMF and Ghahramany's model. Interesting point to be noted is that, in our model, nucleon stability range or stable mass numbers can be estimated without considering the binding energy

formula. We have provided different relations for understanding nucleon stability.

- 7) Proposed new and result oriented number $k \cong \left(\frac{4\pi\varepsilon_0 \hbar^2 m_e c^2}{4e^2 G_s m_p^3}\right) \cong 0.0063326$ seems to play a key role in understanding nuclear stability and binding energy vide relations (6), (7), (8), (9), (10), (16) and (20).
- 8) Proposed first tem is not new a prope second term $[(kA_sZ/2.531) + 3.531]$ 10.06 MeV ms to play an excellent role in fitting d understand ng the binding energy of med in and h v stable clides. It can be evidenced im Table 3. Co ctic seems to be required for kinet atomic nuclides. In ceeds further study.
- 9) Proposed userd term $\left[\left(A_s A\right)^2 A_s\right] \times 10.06 \text{ MeV}$ seems to comproximate to first g and understanding the bading energy of isotopes. We are working on it for its validation better alternative with respect correct stable mass number of Z. For example, see the following Table 9.

ple 9: Binding error by of isotopes of Z = 8, 10 and 20

	Pr. number	huns number	Est. BE (MeV)	Total BE (MeV)	Error (MeV)
	0	14	100.0	98.7352	-1.25
	8	15	111.7	111.9576	0.23
be a firmed	8	16	122.2	127.6211	5.40
be commed	8	17	131.4	131.7646	0.32
-	8	18	139.4	139.8091	0.39
ow energy	8	19	146.1	143.7665	-2.37
stand nuclear	10	17	123.6	112.9107	-10.64
nbined effects	10	18	136.7	132.1432	-4.57
ear charge.	10	19	148.9	143.7827	-5.14
energy with	10	20	160.2	160.6521	0.49
magnitude	10	21	170.5	167.4136	-3.04
allenging task	10	22	179.8	177.7751	-2.01
8 8	10	23	188.2	182.9756	-5.18
no one could oted that, in	10	24	195.6	191.841	-3.72
a variable [47]	20	36	297.1	281.3644	-15.69
s same for any	20	37	309.6	296.1548	-13.50
simple in our	20	38	321.8	313.1263	-8.65
nany's model	20	39	333.4	326.4138	-7.03
n our model.	20	40	344.6	342.0563	-2.58
numbers can	20	41	355.4	350.4187	-4.94
	20	40	2656	261 0002	2 7 2
inding energy	20	42	303.0	301.9002	-3.72

J. Nucl. Phys. Ma	t. Sci. Rad. A.	Vol. 6, No. 2,	, Feb. 2019
-------------------	-----------------	----------------	-------------

20	44	384.7	380.9652	-3.77
20	45	393.6	388.3797	-5.21
20	46	402.0	398.7791	-3.20
20	47	409.9	406.0556	-3.84
20	48	417.3	415.9961	-1.35
20	49	424.3	421.1426	-3.19
20	50	430.8	427.495	-3.35

- 10) In deuteron, binding energy seems to be proportional to e^2 and in other atomic nuclides, binding energy seems to be proportional to e_s^2 .
- 11) Considering the average of (e^2, e_s^2) and without considering 0.71 MeV (as there exists only one proton), based on relation (22), binding energies of ${}_{1}^{2}H$ and ${}_{1}^{3}H$ nuclides can be estimated as, $\left[2-2^{\frac{1}{3}}\right]5.6 \cong 4.15$ MeV and $\left[3-3^{\frac{1}{3}}\right]5.6 \cong 8.72$ MeV respectively.
- 12) Considering the average of (e^2, e_s^2) and considering 0.71 MeV (since there exists two protons), based on relation (22), binding energy of ${}_2^3He$ can be estimated

as,
$$\left| 3 - 3^{\overline{3}} \right| 4.9 \cong 7.63$$
 MeV.

13) Coulombic energy coefficient being 0.7 MeV, reference to $\ln \left(\frac{e^2}{4\pi\varepsilon_0 G_s m_p m_e} \right) \cong 1.515$,

volume or surface energy coefficient can be a pressed as 1.515*10.09 = 15.3 MeV and a symmetric energy coefficient can be expressed $(> 1.5)*15^{\circ}$ MeV. Thus, 10.09 MeV, 10.5 MeV and 23.0 MeV seem to follow a geometric codes with a geometric ratio of 1.515. For ($Z \ge 10^{\circ}$, bind us energy can also be estimated with,

$$B_{A} \cong \left(A \times 4^{-3} - 1\right) \oplus 5.3 \text{MeV} - \frac{Z^{2}}{-2} * 0.71 \times V - \frac{\left(A - 2Z\right)^{2}}{-2} * 23.0 \text{MeV}$$
(27)

- 14) with advanced research in high energy nuclear physics, has onice a maintenance of the understood and bare quantities of the made identifiable.
- 15) With hoher research in nuclear astrophysics, it is certainly possible to understand the combined effects of Newtonian gravitational constant and proposed nuclear gravitational constant. Considering the ratio of nuclear gravitational constant and Newtonian gravitational constant, estimated masses of white dwarfs, neutron stars and black holes [48,49], can be fitted approximately. For example,

$$M_{X} \approx \left(\frac{G_{s}}{G_{N}}\right) \sqrt{\frac{e^{2}}{4\pi\varepsilon_{0}G_{N}}} \approx 0.473M_{\odot}$$

$$M_{X} \approx \left(\frac{G_{s}}{G_{N}}\right) \sqrt{\frac{e_{s}^{2}}{4\pi\varepsilon_{0}G_{N}}} \approx 1.373M_{\odot}$$

$$M_{X} \approx \left(\frac{G_{s}}{G}\right) \sqrt{\frac{\hbar c}{G}} \approx 5.456M_{\odot}$$

$$(28)$$

$$M_{X} \approx \sqrt{\frac{G_{s}}{G_{N}}} \frac{e^{2}}{4\pi\varepsilon_{0}G_{*}m_{p}} = 0.023M_{\odot}$$

$$M_{X} \approx \sqrt{\frac{G_{s}}{G_{N}}} \frac{e^{2}}{4\pi\varepsilon_{0}G_{*}m_{p}} \approx 0.2M_{\odot}$$

$$M_{X} \approx \sqrt{\frac{G_{s}}{G_{N}}} \frac{e^{2}_{s}}{4\pi\varepsilon_{0}G_{*}m_{p}} \approx 0.2M_{\odot}$$

$$M_{X} \approx \sqrt{\frac{G_{s}}{G_{N}}} \left(\frac{1}{G_{N}m_{p}}\right) \approx 3.14M_{\odot}$$
(29)

16) At the moment of a neutron star's birth, the nucleons the compose is now a temperature of around 10^{11} to 10^{12} K [50]. Equation black hole's mass-energy density and thermal energy density [51,52,53], it is possible to show that,

$$\int \simeq 0.4615 \frac{\hbar c^3}{k_B G_N \sqrt{M_B M_{pl}}}.$$
 (30)

$$M_{pl} \cong \sqrt{\frac{\hbar c}{G_N}} \cong 2.176 \times 10^{-8} \mathrm{kg}$$

 $M_{_B} \cong$ Mass of blackhole

and $T_{\scriptscriptstyle R} \cong$ Temprature of blackhole

This just resembles famous Hawking's Black hole temperature formula [54] with a change in its effective mass $\sqrt{M_B M_{pl}}$. With reference to relation (29), considering M_X as a critical mass for neutron stars and black holes, corresponding critical temperature can be fitted with,

$$T_{\chi} \approx \frac{\hbar c^3}{8\pi k_B G_N \sqrt{M_B M_{pl}}}$$
(31)

Quantitatively, Fermi's weak coupling constant [55] and electron rest mass can be fitted with the following relations.

$$G_F \cong \left(\frac{m_e}{m_p}\right)^2 \hbar c R_0^2 \cong \frac{4G_s^2 m_e^2 \hbar}{c^3}$$
(32)

$$m_e \simeq \sqrt{\frac{G_F c^3}{4G_s^2 \hbar}}$$
 and $\frac{2G_s m_e}{c^2} \simeq \sqrt{\frac{G_F}{\hbar c}}$ (33)

18) In a theoretical and verifiable approach, magnitude of the Newtonian gravitational constant can be estimated with nuclear elementary physical constants [56, 57]. For example, with reference to Planck scale, we noticed that,

$$\frac{\pi R_0^2}{\pi R_{pl}^2} \cong \frac{G_s^2 m_p^2}{G_N \hbar c} \cong \left(\frac{m_p}{m_e}\right)^{12}$$
(34)

where, $R_0 \cong \frac{2G_s m_p}{c^2}$, $R_{pl} \cong \frac{2G_N M_{pl}}{c^2} \cong 2\sqrt{\frac{G_N \hbar}{c^3}}$

$$\left(\frac{m_p}{m_e}\right) \cong \left(\frac{G_s m_p^2}{\hbar c} \times \frac{G_s}{G_N}\right)^{\frac{1}{12}} \cong \left(\frac{e_s G_s}{e G_N}\right)^{\frac{1}{12}}$$
(35)

$$G_{N} \cong \left(\frac{m_{e}}{m_{p}}\right)^{10} \left(\frac{G_{F}c^{2}}{4\hbar^{2}}\right) \cong \left(\frac{m_{e}}{m_{p}}\right)^{12} \left(\frac{G_{s}m_{p}^{2}}{\hbar c}\right) G_{s} \qquad (36)$$

$$G_F \cong \left(\frac{m_p}{m_e}\right)^{10} \frac{4\hbar^2 G_N}{c^2} \tag{37}$$

$$\left(\frac{m_p}{m_e}\right) \cong \left(\frac{G_F c^2}{4\hbar^2 G_N}\right)^{\frac{1}{10}}$$
(38)

19) Another very interesting relation is,

$$\left(\frac{m_p}{m_e}\right)^{10} \cong \exp\left(\frac{1}{\alpha_s}\right)^2$$

20) If,
$$G_s \cong \frac{4\pi\varepsilon_0 h^2 c^2 m_e}{e^2 m_p^3} \cong 3.329561 \times 10^{28} \text{ m}^3$$

$$\begin{cases} \alpha_s \cong 0.115194 \\ G_F \cong 1.44021 \times 10^{-62} \text{ .m}^3 \\ G_{-2} \cong 6.679856 \text{ .c} 0 \text{ .m}^3 \text{ kg}^{-1} \text{ sec}^{-2} \end{cases}$$

21) If
$$\alpha_s \simeq \left[\sqrt{\ln \left(\frac{m_s}{2} \frac{m_s}{2} \right)^2} \right]^{-1} \simeq 0.1153515$$

$$\begin{cases} G_s \simeq 3.35 \times 83 \times 10^{28} \text{ sc} \text{ kg}^{-1} \text{sec}^{-2} \\ G_h \simeq 1.4382 \times 10^{-11} \text{ J.m}^3 \\ G_s \simeq 6.670719 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{sec}^{-2} \end{cases}$$
(41)

22) With the rence to the macroscopic Planck's constant and macrocopic strong coupling constant, average values seem to be:

$$\begin{cases} \alpha_s \cong 0.115273 \\ G_s \cong 3.32842 \times 10^{28} \text{ m}^3 \text{kg}^{-1} \text{sec}^{-2} \\ G_F \cong 1.43922 \times 10^{-62} \text{ J.m}^3 \\ G_N \cong 6.675285 \times 10^{-11} \text{ m}^3 \text{kg}^{-1} \text{sec}^{-2} \end{cases}$$
(42)

- 23) Relations (34), (35) and (38) seem to indicate the direct role of G_N in microscopic physics. We are working on understanding their physical significance with respect to proton-electron mass ratio.
- 24) Our proposed assumptions seem to ease the way of understanding and refining the basic concepts of final unification [58, 59, 60].

Conclusion

Liquid drop model, Fermi model. ntum chromodynamics and string heory dels are la ing in implementing the strong pupling const t and Lavity in basic nuclear structure in this context, une tranding and estimating nuclear bind, every gy with 'strong interaction' and 'unification' sincepts on to be gove interesting and needs a serie acconsideration between level. Even though they are so in envirial, section 2, and relations (6), (7), (8), (9), (10), (11), (2), (21), (24), (26), (27), (28), (29), (30, (31), (34), (35), (39) and (42) can be considered ravorable or supporting tools for our proposed model. ne very interesting point to be noted is that, our proposed del seems to AN across the Fermi scale and Planck With fur ter research, mystery of magic numbers cood and a unified model of nuclear binding can by ergy and stability scheme pertaining to high and low ne. Auclear physics can be developed.

Acknowledgements

Authors are very much thankful to Dr. N. Ghahramany and team for their intuitive and heuristic contributions in this most advanced field of nuclear research. Author Seshavatharam is indebted to professors shri M. Nagaphani Sarma, Chairman, shri K.V. Krishna Murthy, founder Chairman, Institute of Scientific Research in Vedas (I-SERVE), Hyderabad, India and Shri K.V.R.S. Murthy, former scientist IICT (CSIR), Govt. of India, Director, Research and Development, I-SERVE, for their valuable guidance and great support in developing this subject. Authors are thankful to the anonymous reviewers for their kind and valuable suggestions in improving the quality of the paper.

References

- [1] K.Tennakone, Phys. Rev. D 10, 1722 (1974).
- [2] J. J. Perng, Nuovo Cimento. Lettere, Serie 2, 23, 552 (1978).
- [3] A. Salam and C. Sivaram, Modern Physics Letters A 8 (4): 321 (1993). https://doi.org/10.1142/S0217732393000325.

(40)

- [4] A. Salam and J. Strathdee, Physical Review D 18, 4596 (1978). https://doi.org/10.1103/PhysRevD.18.4596.
- [5] C. Sivaram and K. P. Sinha, Physical Review D. 16, 1975 (1977). https://doi.org/10.1103/PhysRevD.16.1975
- [6] C. Sivaram and K.P. Sinha, Phys. Rep. **51**, 113 (1979).
- [7] C. Sivaram et al., Preprint, arXiv:1402.5071 (2013)
- [8] E. Recami and V. Tonin-Zanchin, Found. Phys. Lett. 7, 85 (1994).
- [9] E. Recami et al., APH N.S. Heavy Ion Physics 10, 345 (1999).
- [10] Raut Usha and K. P. Shina, Proceedings of the Indian Academy of Sciences Part A: Physical Sciences 49, 352 (1983).
- [11] V. de Sabbata and C. Sivaram, IL Nuovo Cimento 101, 273 (1989).
- [12] Roberto Onofrio, EPL 104, 20002 (2013)
- [13] O. F. Akinto and Farida Tahir, arXiv:1606.06963v3 (2017)
- [14] T.R. Mongan, CoGeNT and DAMA/LIBRA. arXiv:0706.3050v3 (2011)
- [15] J. Dufour, J. of condensed matter nuclear science 1, 47 (2007).
- [16] R. L. Oldershaw, Astrophysics and Space Science 3 431 (2007). https://doi.org/10.1007/s10509-007-9557-x.
- [17] R.L. Oldershaw, Journal of Cosp togy 1361 (2010).
- [18] R. A. Stone, Progress in Physica, 1
- [19] Sergey G. Fedosin, Hadror Journal **35**, 49 (2012).
- [20] S. I. Fisenko, M.M.P. and B. G. manov, Physics Letters A 145, 8-9, 40, 1990).
- [21] Seshavatharam V. v. S & Lakshmin ayana S, Progress in Physics **3**, (2010)
 - https://doi. /10.20/4/preprints201810.0053.v2.
- [22] U. V. S. Sester charam & S. Lakshminarayana, Proceedings of the AE-BP of Symp. On Nucl. Phys. , 118 (115).
- [23] V. S. Seshavatharam and S. Lakshminarayana, Jos. 47 of Nuclear Sciences 4, 31 (2017). https://oi.org/10.1501/nuclear_000000024.
- [24] U.V.S. Son watharam and S.Lakshminarayana, To be appeared in the proceedings of ICNPAP conference, October, 2018, Centre for Applied Physics, Central University of Jharkhand, Ranchi, India.
- [25] U. V. S. Seshavatharam and S.Lakshminarayana, To be appeared in the proceedings of ICNPAP conference, October, 2018, Centre for Applied Physics, Central University of Jharkhand, Ranchi, India.

- [26] U.V.S. Seshavatharam and S.Lakshminarayana, Proceedings of the DAE-BRNS Symp. On Nucl. Phys. 62, 106 (2017).
- [27] U. V. S. Seshavatharam and S.Lakshminarayana, Materials Today: 3/10PB, Proceedings 3 3976–3981 (2016).
- [28] U. V. S. Seshavatharam and S. Lakshminarayana, Journal of Nuclear Physics, Material Sciences, Radiation and Applications 4, 107, (2015)
- [29] U. V. S. Seshavatharam and S. Lakshmin ayana, Prespacetime Journal 9, 58 (2013).
- [30] U. V. S. Seshavatharary and S. Lak, pinarayary, Open Science Journal of Lodern Physics. 2, 19(10)15).
- [31] U. V. S. Seshav baran and S. Laksaminarayana, International Journa, Mathematics and Physics 7, 117 (2011).
- [32] U. V. S. Ashavatharam S. Lakshminarayana, Universal Journal of Physics and Application **9**, 210 2015).
- [] U. V. S. Seshavatharam and S. Lakshminarayana, Universal Journal of Physics and Application **10**, 198 (2016).
- [35] V. S. Seshavatharam and S. Lakshminarayana, Journal of Nuclear Sciences, 4, 7 (2017). https://doi.org/10.1501/nuclear_0000000024.
- [36] U. V. S. Seshavatharam & S.Lakshminarayana, Prespacetime Journal, Vol. 8, Iss. 10, 1255 (2018).
- [37] U. V. S. Seshavatharam and S. Lakshminarayana, Prespacetime Journal 8, 881 (2017).
- [38] P. R. Chowdhury et al., Mod. Phys. Lett. A20, 1605 (2005).
- [39] Oganessian Yu and V. K. Utyonkov, Physical Society (Great Britain). 78, 036301 (2015)
- [40] N. Ghahramany et al., Physics of Particles and Nuclei Letters 8, 97 (2011)
- [41] N. Ghahramany et al., Iranian Journal of Science & Technology A3: 201 (2011).
- [42] W. D. Myers et al., Table of Nuclear Masses according to the 1994 Thomas-Fermi Model. (from nsdssd.lbl.gov).
- [43] U. V. S. Seshavatharam and S. Lakshminarayana, Prespacetime Journal **9**, 642 (2018).
- [44] N. Ghahramany et al., Iranian Physical Journal 2, 35 (2007).
- [45] D. T. Tran et al., Nature Communications 9, Article number: 1594 (2018).
- [46] J. Fridmann et al., Nature. 435:922-924 (2005).

- [47] N. Ghahramany et al., Universal Journal of Physics and Application 1, 18 (2013).
- [48] Ludwig Hendrik & Ruffini Remo. Journal of the Korean Physical Society. 65. 10.3938/jkps.65.892. (2014).
- [49] I. F. Mirabel, New Astronomy Reviews **78**, 1 (2017). https://en.wikipedia.org/wiki/Neutron_star
- [50] U. V. S. Seshavatharam and S. Lakshminarayana, Proceedings of the DAE Symp. on Nucl. Phys. 59, 804 (2014).
- [51] U. V. S. Seshavatharam and S. Lakshminarayana, Frontiers of Astronomy, Astrophysics and Cosmology, 1, 16 (2015).
- [52] A. Mitra, Foundations of Physics Letters. 13, 543 (2000)
- [53] S.W. Hawking, Commun. Math. Phys. 43, 199 (1975)

- [54] C. Patrignani et al., (Particle Data Group), Chin. Phys. C 40, 100001 (2016) and 2017 update
- [55] Jonathan L. Feng et al., International Journal of Modern Physics D 13, 2355 (2004). https://doi.org/10.1142/S0218271804006474.
- [56] Brandenburg J. E, International Journal of Astrophysics and Space Science. Special Issue: Quantum Vacuum, Fundamental Arena of the Universe: Models, Applications and Perspectives. 2014 (2014, https://doi.org/10.11648/j.ij.ex.s.20140206014.
- [57] S. Bethke and G. P. Salam, One K. A. et al. Particle Data Group), Chin. Phys. C 38, 0001 (2014) and 2015 update.
- [58] K. Becker, M. Becker and J. H. Schwarz, Cambridge University Poss (200 https://www.co/essays/co-theo.dest-for-top-downunifer.co/ws/physics-stalk

Journal of Nuclear Physics, Material Sciences, Radiation and Applications

Chitkara University, Saraswati Kendra, SCO 160-161, Sector 9-C, Chandigarh, 160009, India

