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Abstract In the theoretical framework of Two Higgs Doublet Model (2HDM) 
plus three right-handed neutrinos we consider a universal treatment for the mass 
matrices, aside from that the active neutrinos acquire their small mass through 
the type-I seesaw mechanism. Then, as long as a matrix with four-zero texture 
is used to represent the right-handed neutrinos and Yukawa matrices, we obtain 
a unified treatment where all fermion mass matrices have four-zero texture. We 
obtain analytical and explicit expressions for the lepton flavour mixing matrix 
PMNS in terms of fermion masses and parameters associated with the 2HDM-III. 
Further, we compare these expressions of the PMNS matrix with the most up to 
date values of masses and mixing in the lepton sector, via a likelihood test. We 
find that the analytical expressions that we derived reproduce remarkably well the 
most recent experimental data of neutrino oscillations.

Keywords: Neutrinos; Seesaw; PMNS matrix; 2HDM-III.

1. inTrODuCTiOn

Although highly successful in terms of its phenomenological predictions, the 
Standard Model (SM) of electroweak interactions seems incomplete from 
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a theoretical view. In its present form, it is unable to predict the masses of 
fermions (leptons and quarks), or explain why there are several families of 
such particles. One of the most interesting phenomena is presented by the 
neutrino mixing, a phenomenon known as neutrino oscillation. In concordance 
with the recent work focus on neutrino physics [5], neutrino mass scale, 
corresponding Dirac or Majorana kind of fermion, and the source of Charge-
Parity (CP) violation are unsolved questions. For that, see the experimental 
results concerning KamLAND (KL) reactor neutrinos [12, 13, 19], with 
respect to the expectations from reference Huber-Müller(HM) spectra [12, 13]. 
In each of the current high-statistics short-baseline (SBL) reactor experiments 
RENO [19, 6], Double Chooz [1] and Daya Bay [3]. In general, if neutrinos are 
massive particles and their masses are non-degenerate, it is impossible to find 
a flavour basis in which the coincidence between flavour and mass eigenstates 
holds both for charged leptons and for neutrinos. Hence, the phenomenon of 
leptonic flavour mixing is naturally appear between three charged leptons and 
three massive neutrinos. If there exist irremovable phase factors in the Yukawa 
interactions, the CP violation will naturally appear both in the quark and lepton 
sector.

In this context, the flavour and mass generation are two concepts strongly 
intertwined. To know the flavour dynamic in models beyond the SM, we 
need to understand the flavour mechanism and mass generation arising in 
the standard theory. In this theory, the Yukawa matrices are of great interest 
because the values of its elements define to the fermion masses, as well as its 
phases factors are related with the CP violation through the mixing matrix.

Moreover, the flavour changing currents arise from the not simultaneous 
diagonalization of Higgs and Yukawa matrices. Particularly, we will study 
the flavour dynamics through Yukawa matrices in the 2HDM-III (see therein 
references related with this model in [9]), which into the processes comes with 
flavour violation through Higgs states, that is, it allows to appear the Flavour 
Changing Neutral Currents (FCNC) mediated by Higgs fields.

Other models like the 2HDM-III allow the FCNC [4, 14]. The difference 
between these models is in the Yukawa structure and symmetries of the Higgs 
sector as well as the possible appearance of new sources of CP violation. In 
this work, the Higgs potential preserves the CP symmetry with the Hermitian 
Yukawa matrices. 2HDM-III predicts three neutral states and a pair of charged 
states: 0

1,2,3H
 
and 1,2H±

 
[15].

In 2HDM-III, FCNC are kept under control by imposing some texture 
of Yukawa matrices that reproduce the observed fermion masses and mixing 
angles [7]. Using texture forms allows for a direct relation between the Yukawa 
matrix elements and the parameters related with the decay widths and cross 
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section without losing the terms proportional to the light fermions masses. 
Specifically, considering a four-zero texture Yukawa matrix, one obtains in a 
natural way the Cheng-Sher ansatz for couplings flavour mix, which is widely 
used in the literature, where flavoured couplings are considered proportional 
to the involved fermion masses [8, 9].

This work is realized in the frame of 2HDM-III, considering a hybrid 
treatment of the neutral leptonic sector through type-I seesaw mechanism. 
Moreover, a four-zero texture ansatz for Dirac and Majorana neutrino mass 
matrices, left and right-handed neutrinos respectively. We perform a statistical 
analysis of neutrino mixing angles using the likelihood test.

2. THE 2HDM AnD sEEsAw MECHAnisM

In order to make a minimal extension of 2HDM by introducing right-handed 
neutrinos, we need to consider six neutrino fields; three left-handed neutrinos 

( ) , ,
T

L eL µL Lτν ν ν ν= and three right-handed neutrinos ( )1 2 3  , , R R R RN N N N= , 

where only the left-handed fields take part in the electroweak interactions. In 
context of Two Higgs Doublet Model plus massive neutrinos, 2HDM+3ν, for 
Dirac leptons the Lagrangian of Yukawa interactions has the form:

 
2

1

(   )  . .,l
Y k k R k k R

k

L Y L N Y L l H cν

=

= Φ + Φ +∑ �  (1)

where ( ),
T

l L
L lν −=  is the left-handed doublet of SU(2), the index  represents 

the charged leptons. The ( )0,
T

k k kφ φ+Φ =  denotes the Higgs doublets with 
*

2k kiσΦ = Φ� . Finally, the j
kY  with ,j l ν= , are the complex Yukawa 3×3 

matrices. In flavour space, the Dirac fermion mass matrix can be written as:

 ( )1 1 2 2
1 ,
2

j j
jM Y Yν ν= +  (2)

where 1,2ν  
are the vacuum expectation values (vev) associated with each of 

the Higgs doublets. In addition, these matrices can be diagonalized through a 
unitary transformation u, such that:

 ( ) { }†
1 1 2 2 1 2 3

1 , ,
2

j j
jL j jR j j jU M U Y Y diag m m mν ν= + =� �  (3)

where †f j
k jL k jRY U Y U=�  are the Yukawa matrices in the mass basis, which give 

us the shape of Fermion-Fermion-Higgs couplings.
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Here we consider that active neutrinos acquire their small mass through some 
seesaw mechanism. Hence, it is possible to write out the following hybrid 
mass term which involves both Dirac and Majorana neutrinos

 ( ) ( )1 1 . .
2 2

c cD M
L D R L L L R R RL M N M N M N H cν ν ν+ =− − − +  (4)

In the above expression  DM
 
is the Dirac neutrino mass matrix, while  LM

 

and  RM
 
are symmetric mass matrices because the corresponding mass terms 

are of the Majorana type. In this case the lepton number L  is not conserved. 
In order to diagonalize the hybrid Lagrangian, equation (4), we can begin by 

rewriting to D ML +   as follows:

 ( )1 . . ,
2

cD M D M
L LL n M n H c+ +=− +  (5)

where ( )( , )c
L L Rn Nν=  and

 ( )    D M T
L D D RM M M M M+ =  (6)

is a 6×6 complex symmetric matrix and can be presented in its diagonal  
form as:

 { } 
1 2,T D Mm U M U diag λ λ+= =  (7)

where U is a 6 × 6 unitary matrix. In the case that neutrino mass matrices 
satisfy the following hierarchy condition R D LM M M� � , we obtain that 

eigenvalues of  D MM +  matrix take the form:

 λ λ1 2
1≈ ≈ − −M and M M M MR L D R D

T .  (8)

The previous expression is known as type-(I+II) seesaw mechanism, and it is 
just the effective mass matrix of three active neutrinos.

3. FErMiOn MAss MATriCEs

In general, the Dirac fermion mass matrix has an arbitrary shape, while the 
right-handed neutrino mass matrix must be symmetric, since these latter are 
Majorana particles. In particular, in this work we consider that, respectively, 
the Dirac fermion and right-handed neutrino mass matrices are represented 
with a Hermitian and complex symmetric matrix with a four-zero texture 
shape. The explicit form of these matrices are the following
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M P M Pj j j j
i

i

j

je

e

C

CC

B C

= =













−

− +

†

( )

1 0 0

0 0

0 0

1 0

θ

θ θ

��B B

B e

e

e
j j

j
i

i

B C

C

0

1 0 0

0 0

0 0− +











( )θ θ

θ

ii

R

B C

c

c b b

b a

( )θ θ+













=











and M

0 0

0

� 
,

  
(9)

where { }B jarg Bθ ≡  and { }C jarg Cθ ≡ . From the expressions for the Dirac 
fermion mass matrix given in equations (2) and (9), we obtain that j

kY  Yukawa 
matrices also have a shape with four-zero texture, as shown below

 

M j

j

j j j

j j

jC

C B B

B A

v
C

C=













=

1 0

0
2

0 01

1
*

*

cos� β jj j j

j j

j

j jB B

B A

C

C B B*

*

*tan� �
1 1

1 1

2

2 2

0

0 0










+ β 22

2 20

j

j jB A*

,

































  
(10)

where 2 1/  tanβ ν ν=  and ( )22 2 2
1 2 246.22 GeVν ν ν= + = .

Additionally, here we consider that the left-handed neutrinos acquire 
their small mass through the type-I seesaw mechanism, which is defined as: 

1  T
L D R DM M M Mν

−= . So, from the mass matrices given in equation (9) the 

LMν  matrix takes the following explicit form

 

M KM KvL vL
i

i

vL

vLe

e

C

C BB

A

= =













1 0 0

0 0

0 0

1 0
2

2

ϕ

ϕ

/

/

�
vvL vL

vL vL

i

i

B

B A

e

e

B

A0

1 0 0

0 0

0 0

2

2

















 ϕ

ϕ

/

/








,

  
(11)

where

 

A
A

a
B

B C

c
A

B

a

bC

ac
C

C

c

B

v
D

v
D D

D
D D

v
D

v

L L L
= + − ==











2 2

, , ,
* * *

�
LL

bB

ac

ab b C

ac

B

c
C

B C

c
B

B

a
D D D

D
D D

D
D= − −

−
+










+ +

( ) *
*

*� � �2

2
−−











bC

ac
D
*

.
 (12)

The elements of diagonal phase matrix K  are defined as { }A Larg Aνϕ ≡  

and { }B Larg Bνϕ ≡ � . Also, the phase factors of LMν  matrix must satisfy the 

conditions 2 { } { }  L Larg C arg Bν ν= �  and 2 { } { } { }    L L Larg B arg A arg Bν ν ν= + � .
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The real symmetric mass matrix fM , with , , , Lf u d l ν= , may be brought to 

diagonal form by means of an orthogonal transformation,

 ( )1 2 3, , T
f f f f f fM O diag Oλ λ λ=  (13)

where the fλ ’s are the eigenvalues of fM  matrix and fO  is a real orthogonal 

matrix. Hence, the invariants of fM  matrix are1

From the above expressions we may express the elements of fM  
matrices in terms of its mass eigenvalues. However, they are unable to give 
us information about the possible hierarchy in the mass spectrum. Therefore, 
a matrix with the four-zero texture shape allows to have a normal or inverted 
hierarchy in the fermionic masses. This latter hierarchy only is possible for the 
left-handed neutrino masses.

 

Tr M A B

Det M A C

M

f f f f f f

f f f f f f

� �

�

�

{ }= + = + +

{ }=− =

λ λ λ

λ λ λ

χ

1 2 3

2
1 2 3

,

| | ,

ff f f

f f f f

f f f

Tr M Tr M

A B B C

{ }= { }− { }
=− + +
=− −

1

2
2 2

2 2

1 2 1

( )

| | | |

� �

�

λ λ λ λ ff f f3 2 3−λ λ .
 (14)

3.1 The mixing matrix as function of fermion masses

After obtaining the neutrino mass matrix through the type-I seesaw mechanism, 
let this matrix diagonalize in the context of two different scenarios, which 
depend on the mass hierarchy imposed on the neutrino mass matrix: Normal 
Hierarchy (NH) and Inverted Hierarchy (IH).

Normal hierarchy

The NH in the eigenvalues of fM
 
matrix is defined as λ

i3
>λ

i2
>λ

i1
. Hence, the 

mass matrix parameters in terms of mass eigenvalues and the (3,3) mass matrix 
entry, take the form

 1 2 3 ,f f f f fB Aλ λ λ= + + −�  (15)

 
2 1 2 3 ,f f f

f
f

C
A

λ λ λ
=−  (16)

1In this expressions for the left-handed neutrinos A
f 
= |A

f 
| and Bf = |Bf|

.
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( )( )( )2 3 1 2 . f f f f f f

f
f

A A A
B

A

λ λ λ− − −
=  (17)

According with the results, we have to take fj fjλ λ=−  with 1,2,3j=  such 
that

 

3 2 1 1

3 1 2 2

2 1 3 3

   for  , 

   for  , 

   for  . 

f i f f f

f i f f f

f i f f f

A

A

A

λ λ λ λ

λ λ λ λ

λ λ λ λ

> > =−

> > =−

> > =−

 (18)

In case of the charged leptons: 1 2 3, , l e l lm m mµ τλ λ λ= = = . The NH is evident 

by defining the adimensional parameters 3/f f fM M λ≡� . Also, assuming this 

hierarchical ansatz, the heaviest particle is placed in the (3,3) mass matrix 

entry. Then, it is assumed that the parameter f f fa A  is very close to 1, 

therefore one can define 1f fa δ≡ − , and the mass matrix takes the expression 

 

1 2

1 2
1 2 1 2

1 2

0 0
1

 ,
1 1

0 1
1

f

f f

f

f f f
f f i f f

f f

f
f f f

f

M

λ λ

δ

λ λ δ
λ λ δ ξ ξ

δ δ

δ
ξ ξ δ

δ

=

     −       − +  − −       −  −   

�

� �

� �
� �

 (19)

where
 ( )1 11f i fξ δ λ= − − �  and ( )2 21 ,f i fξ δ λ= − − �  (20)

with  1 1 3/f f fλ λ λ=�  and 2 2 3/ .f f fλ λ λ=�

Inverted hierarchy

For an inverted hierarchy (IH), the relation between the eigenvalues is 

2 1 3f f fλ λ λ> > . Analogous to NH, the mass matrix parameters are expressed 
in terms of eigenvalues as

 1 2 3 , f f f f fB Aλ λ λ= + + −�  (21)
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2 1 2 3 , f f f

f
f

C
A

λ λ λ
=−  (22)

 
( )( )( )2 3 1 2 .f f f f f f

f
f

A A A
B

A

λ λ λ− − −
=  (23)

According with the results, we have to take fj fjλ λ=−  with j = 1,2,3 such 
that

 

λ λ λ λ

λ λ λ λ

λ

f i f f f

f i f f f

f

A for

A for

2 3 1 1

1 3 2 2

> > =−

> > =−

,

,

22 1 3 3> > =−A fori f f fλ λ λ .
 (24)

For neutrinos: 1 1 2 2 3 3 ,   ,   L L Lm m mν ν νλ ν λ ν λ ν= = = ; and for the charged 

leptons: 1 2 3, , l e l lm m mν ν µ ν τλ λ λ= = = . For this hierarchy, the mass matrix is

 

1 3

1 3
1 3 1 3

1 3

0 0
1

1 1

0 1
1

i

f f

f

f f f
f f f f f

f f

f
f f f

f

M

λ λ

δ

λ λ δ
λ λ δ ξ ξ

δ δ

δ
ξ ξ δ

δ

=

     −       − + +  − −       −  −   

�

� �

� �
� �

 (25)

where 

 ( ) ( )1 1 3 31 ,    1 ,f f f f f fandξ δ λ ξ δ λ= − + = − +� �  (26)

with 3 3 2/  f f fλ λ λ=� and 
1 1 2/f f fλ λ λ=� .

For a normal [inverted] hierarchy in the neutrino mass spectrum the real 
orthogonal matrix that diagonalized the fermion mass matrix with four-zero 
texture, in terms of fermion masses has the form:
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O f

f f

f

f f

f

f f fm

D

m

D

m m

=

−
� � � �2[1] 1[3]

1[3]

1[3] 2[1]

2[1]

1[3] 2[1]ξ ξ δ

DD

m

D

m

D

f

f f f

f

f f f

f

3[2]

1[3] 1[3]

1[3]

2[1] 2[1]

2[1]

(1 (1 )� �− −δ ξ δ ξ δ) ff f

f

f f f

f

f f f

f

D

m

D

m

D

(1

3[2]

1[3] 2[1]

1[3])

2[1] 1[3]

2[1

−

− −

δ

δ ξ δ ξ

)

� �

]]

1[3] 2[1]

3[2]

ξ ξf f

fD













.

 (27)

In this matrix we have

 

ξ δ ξ δ

δ

f f f f f f

f f f

m m

D m

1 3 1 3 2 1 2 1

1 3 1

1 1

1

[ ] [ ] [ ] [ ]

[ ]

, ,

( )(

= − − = + −

= −

� �

� [[ ] [ ] [ ]

[ ] [ ] [ ]

)( ),

( )( )(

3 2 1 1 3

2 1 1 3 2 1

1

1 1

+ −

= − + +

� �

� �

m m

D m m

f f

f f f fδ ��

� �

m

D m m

f

f f f f

2 1

3 2 1 3 2 11 1 1

[ ]

[ ] [ ] [ ]

),

( )( )( ).= − − +δ
 (28)

Now the subindex f  is considering as   , , ,f u d lν= . From equations (10) and 
(27) we obtain that the elements of the Yukawa matrices in the base of the mass 

f
kY�   obey the called Cheng and Sher relation [9]

 ( ) ( )  , jk jlj j
k kkl kl

m m
Y χ

ν
=� �  (29)

where ,  1 ,2,3k l=  and ( )jk kl
χ�

  
are complex functions of the Yukawa matrix 

parameters and the mass matrix parameter jδ  
which is associated with the 

2HDM.

3.2 The flavour mixing matrix

The flavour mixing matrix of leptons, PMNSV  arises from the lack of 
correspondence between the diagonalization of the mass matrices of the 
charged leptons and left-handed neutrinos, and this is defined as:

 †
, , ,   PMNS l l l lV U U with U P Oν ν ν ν= =  (30)

Also, the lepton mixing matrix can be written as:

  ,T l
PMNS lV O P Oν

ν
−=  (31)
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where ( )1 21,   ,i ilP diag e eν Φ Φ− =  with the phases factors 
1   / 2B Cϕ θΦ = −  and 

2   / 2A B Cϕ θ θΦ = − − . Finally, the theoretical entries of the matrix PMNSV  for 

th NH [IH] are given as:

 

V
m m

D D

m m

D D
e

th v l v

l v

e v

l v

2

1 3 1 2 1

1 2 1

2 1

1 2 1

1=− + −
� � � �
µ

ξ ξ
δ

[ ] [ ]

[ ]

[ ]

[ ]

vv l l v

i

v l l v

i

e

th v

e e

V
m m

( )( )( )− +

=−

1
1 2 1 2 1 3

3

1

1 2δ ξ ξ δ δ ξ ξ

µ

[ ] [ ]
,

Φ Φ

� �
[[ ] [ ]

[ ] [ ]

3 2 1 1

1 3 2 1 3 2

1
1 1

� �m

D D

m

D D
e

v v l

l v

e

l v

v v l l

i
δ ξ

δ δ δ ξ+ − −( )( ) Φ
11 2

2 1 3 2 1

1

2 1 2 1 3

2

−

=−

( )δ ξ ξ ξ

ξ ξ
µ

l l v v

i

th e v l v

l v

e

V
m m

D D

[ ] [ ]

[ ] [ ]

,
Φ

� �

11 3

1 3

2 1 3

2 1 3 1
1 1 1

[ ]

[ ]

[ ]

[ ]
+ − − +( )( )

� �m m

D D
e

v

l v

v l l v

i

v l l

µ
δ δ ξ ξ δ δ ξΦ ξξ

ξ ξ
µ

µ

v

i

th e v l v

l v

v

e

V
m m

D D

m m

2 1

2

1 3 2 2 1

2 2 1

2

2

[ ]

[ ] [ ]

[ ]

[

,
Φ( )

=− +
� � � �

11

2 2 1

2 2 1 1 1 3
1 1 1 2

]

[ ]

[ ] [ ]
,

D D
e e

l v

v l l v

i

v l l v

i− − +( )( )( )δ δ ξ ξ δ δ ξ ξΦ Φ

VV
m m m

D D

m

D D

th e v v v l

l v l v

v vµ

µδ ξ
δ δ

3

1 3 2 1 2

2 3 2 2 3 2

1=− + −
� � � �

[ ] [ ]

[ ] [ ]

(( )( )( )− −

=

1
2 1 1 3 2 1

1

2

1 2δ ξ δ ξ ξ ξ

τ

µ

l l

i

l l v v

i

th e v

e e

V
m m m

Φ Φ

[ ] [ ]

[

,

� � �
11 1 1 3

3 1 3

1 3

2 1 3

1 3
1 1

] [ ]

[ ]

[ ]

[ ]

[ ]

δ ξ
δ δ δ ξ

v

l v

v

l v

l v l v
D D

m

D D
e+ − −( )( )

�
ii

v l l v

i

th e v v

l v

e

V
m m m

D D

Φ Φ
1 2

1 2 2 1

2

1 3 1 2 1

3

−

=

( )δ ξ ξ ξ

δ ξ
τ

µ

[ ]

[ ] [ ]

,

� � �

22 1

2 1

3 2 1

2 1 1 2 1
1 1 1

[ ]

[ ]

[ ]

[ ]
+ − − −( )( )

�m

D D
e

v

l v

l v l v

i

v l l v
δ δ δ ξ δ ξ ξ ξΦ

[[ ]

[ ] [ ]

[ ]

,
3

3

1 3 2 1 1

3 3 2 3 3

2

1

e

V
m m m m

D D D D

i

th e v v v

l v l v

Φ( )

= +
τ

µ
δ δ� � � �

[[ ]

[ ] [ ]
.

2

1 2 1 3 2 1
1 1 1 2δ δ δ δ ξ ξ ξ ξ

l v v l

i

l l v v

i
e e− − −( )( )( )Φ Φ

  

(32)

3.3 The symmetric parameterization

In the basis where flavour eigenstates of three charged leptons are identified 
with their mass eigenstates, the flavour eigenstates of three neutrinos can be 
written as

 ( ) ( )1 2 3 1 2 3 1 2 3            .e e e eV V V V V V V V Vµ τ µ µ µ τ τ τν ν ν =  (33)

As neutrinos are Majorana particles, the nine elements of PMNS lepton 
mixing matrix can be parameterized by using three rotation angles and three 
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CP-violating phases [11]. In the so called symmetrical parametrization, the 
mixing matrix has the shape [17, 18]:

 

V

c c s c e s e

s c e c s s e

i i

i i
PMNS = − −

− −

−
12 13 12 13 13

12 23 12 13 23

12 13

12

φ φ

φ (( ) ( )φ φ φ φ φ φ23 13 23 12 13 23
12 23 12 13 23 13 23

12

− + −− −−c c s s s e c s e

s s

i i

223 12 13 23 12 23 12 13 23
23 12 13 23 12e c s c e c s e s s c ei i i i( ) (φ φ φ φ φ+ −− − − −−











φ13
13 23

)

,

c c
 

(34)

where ij ijc cosθ=
 
and ij ijs sinθ= . In this parametrization, the relation between 

flavour mixing angles and the entries of V
PMNS 

matrix is

 

22
32 22 2 2

13 3 12 232 2
3 3

, ,  .
1 1

e
e

e e

VV
sin V sin sin

V V
µ

θ θ θ≡ ≡ ≡
− −

 (35)

From the above expressions for the mixing angles, we can conclude that 
these are exactly the same expressions that are obtained in the Standard 
parametrization [16]. In fact, the difference between the symmetric and 
standard parametrization is explicitly manifest in the CP invariants. The 
Jarlskog invariant which is used for describing the violation in conventional 
neutrino oscillations is defined as: { }* * * *

1 3 3 1 . CP e eJ Im V V V Vµ µ=

4. nuMEriCAL AnALysis

In this section we make a likelihood test χ2 with the purpose of obtaining 
the best fit point (BFP), which allows us to get the numerical values of some 
free parameters in the χ2 function. But before, we can take advantage of the 
last experimental data reported by Planck collaboration [2] and global fits 
of neutrino oscillations data [10]. All this in order to reduce the degrees of 
freedom in the analysis.

4.1 neutrino mass bounds

In the three flavour context there are six independent parameters which 
govern the behaviour of neutrino oscillations: the differences of the squared 
neutrino masses, flavour mixing angles and the Dirac CP-violating phase. The 
definition of first one is 2 2 2

i jijm m mν ν∆ ≡ − . For a normal [inverted] hierarchy 
in the neutrino mass spectrum, we can express two of the neutrino masses in 
terms of the heaviest neutrino mass, as well as 2

ijm∆  
parameter, as: 

 
[ ] [ ] [ ] [ ] [ ] [ ]1 3 3 2 2 1 3 2

2 2 2 2
31 23 32 21        .m m m and m m mν ν ν ν= −∆ = −∆  (36)
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The heavy neutrino mass must satisfy the relation [ ]3

2 2
31 23m mν ≥∆ , and can be 

considered like the only one free parameter in the above relations, since the 
oscillation parameters 2

ijm∆  are experimentally determined. The values for the 
parameters 2

ijm∆
 
at BFP±1σ, 2σ and 3σ reported in [10] are:

( ) ( )2 5 2 0.19 2 3 2
21 0.18 31

0.05 0.05
0.07 0.06

10 7.60 ,  7.26 7.99,  7.11 8.18, 10

{2.48 ,  2.35 2.59,  2.30 2.65, 2.38 ,  2.26 2.48,  2.20 2.54.

m eV m eV− + −

−

+ +

− −

∆ = − − ∆

= − − − −   
  (37) 
In the above expressions for the parameter 2

31m∆
 
the upper [lower] row 

correspond to the values for a normal [inverted] hierarchy in the mass 
spectrum. Moreover, the sum of the mass of the active neutrinos must comply 
with inequality; 0.23imν <∑ , for the following actual number of active 

neutrinos N
ef f 

= 3.15 ± 0.23 [2]. These results are inpendent of the hierarchy of 
the neutrino mass spectrum. From equations (36) and (37) the allowed ranges 
for the neutrino masses are obtained and given in the Table 1. Also it is easy 
to conclude that for both hierarchies, there is the possibility that the lightest 
neutrino could be a massless particle.

4.2 The likelihood test χ2

In order to verify the viability of our hypothesis of assert that all fermion mass 
matrices have the same generic shape, namely a four-zero texture, we make a 
likelihood test χ2 in which the estimator function is defined as:

 
( )22 23

2
2 . 
ij

exp th
ij ij

i j

sin sin

θ

θ θ
χ

σ<

−
=∑  (38)

Table 1: Value ranges of neutrino masses, which are obtained from equations (36) and 
(37). In addition to considering the mass constraint on heavier neutrino m2ν

3[2]
>∆m2

31[23]
, 

and the relation mν
i 
< 0.23 [2].

Hierarchy mν
1 
(10−2ev) mν

2 
(10−2ev) mν

3 
(10−2ev) ∆m2

ij 
(ev)

normal
[0,7.12] 
[0,7.18]
[0,7.25]

[8.72×10−1,7.18] 
[8.61×10−1,7.23]
[8.51×10 −1,7.30]

[4.98,8.69]
[4.91,8.71]
[4.84,8.74]

BFP
BFP±1σ
BFP±2σ

[0,7.32] [8.40×10−1,7.37] [4.76,8.76] BFP±3σ

inverted
[4.87,8.19] 
[4.81,8.21]
[4.75,8.22]

[4.96,8.23] 
[4.89,8.24]
[4.83,8.26]

[0,6.58] 
[0,6.64]
[0,6.70]

BFP
BFP±1σ
BFP±2σ

[4.69,8.23] [4.76,8.27] [0,6.76] BFP±3σ
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Here, the superscript th states the theoretical expressions of mixing angles 
obtained from the equations (33) and (35), while the terms with superscript exp 
states the experimental data with uncertainty 2

ijθ
σ

 
. The experimental data for 

mixing angles considered in this analysis are given in Table 2 [10].
From expressions in equations (33), (35) and (36), we can see that in general 

the χ2 function depends on five free parameters 
[ ]( )3 2

2 2
1 2, , , , .l mν νχ χ δ δ= Φ Φ  

But with help of the analysis performed in the previous section, the heaviest 
neutrino mass is not considered like a free parameter because its numerical 
values are determined from the experimental data. Hence, the χ2 function has 
only four free parameters. 

Now to perform the likelihood test χ2, we consider that the neutrino 
masses, given in the Table 1, run into the range of 2σ. The values for lepton 
masses in MeV’s are [16] 

 

( )

  0.5109998928  0.000000011,  
1 05.6583715  0.0000035,  
1 776.82  0.16. 39

em m
and m

µ

τ

= ±
= ±
= ±

 (39)

Then, as result of the minimizing procedure of the χ2 function, for normal 
hierarchy in neutrino masses we obtain that the values of free parameters in the 
best fit point (BFP) are the following:

 

[ ]3 2

1 2
2

  6.789 1 0 1 ,  2.815 ,   8.355 1 0 2,  
 3.90 1 0 1,   5.00 1 0 2   1 .643 1 0 9.

l

min

rad rad
m eV

ν

ν

δ δ
χ

Φ =− × − Φ = = × −
= × − = × − = × −

 (40)

As mentioned above the χ2 function depends on four free parameters and 
three physical observables. Therefore, this function has minus one degrees 

Table 2: Experimental results of neutrino mixing angles in the ranges 1σ, 2σ and 3σ 
[10].

Parameter BFP±1σ 2σ 3σ

sin2θ
12

(10−1) 3.26 ± 0.16 2.92−3.57 2.78−3.75

sin2θ
23

(10−1)[NH]  0.32
1.245.67+−

4.14−6.23 3.93−6.43

sin2 θ
23

(10−1) [IH]  0.25
0.395.73+−

4.35−6.21 4.03−6.40

sin2(θ
13

)(10−2)[NH] 2.26 ± 0.12 2.02−5.20 1.90−2.60

sin2(θ
13

)(10−2) [IH] 2.29 ± 0.12 2.05−2.52 1.93−2.65
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of freedom, whereby we only can obtain the BFP. However, from equation 
(40) we know the numerical values for the free parameters in the BFP. So, a 
new analysis is performance fixing the CP violation phase, since this is the 
parameter less known from the experimental point of view. But, nowadays 
there are several experiments focussed on its measurement. Then, for a normal 
hierarchy in leptonic mass spectrum, we fix the value of phases Φ

1 
and Φ

2
, 

as well as the heaviest neutrino mass 
[ ]3 2

mν to the values given in equation 
(40). So, the ( )2 2 ,l νχ χ δ δ=  function implies one degree of freedom. This 
last choice allows us to obtain the parameter regions at different confidential 
levels. The results related to these regions are shown in Figure 1.

4.3 The lepton mixing angles

Here, considering the results of the above likelihood test we study the sine of 
flavour mixing angles given by equation (35), as well as the PMNS matrix. 
In Figure 2, we show the range of theoretical values obtained at ±1σ as 
the experimental edge values given in Table 2. One can note that for both 

( )12,13,23  l vs sinδ θ , and for the ( )12,13,23  l vs sinδ θ , results are inside the region 
of 1σ. 

As an immediate result of the above likelihood test χ2, the flavour mixing 
matrix V

PMNS 
is numerically computed,

In the above section we have seen that in our theoretical framework, 
2HDM+3ν, where the fermion mass matrix has a four-zero texture shape. 
We can reproduce the values of oscillation parameters in a very good 
agreement with the last experimental data. The next step in this study shall 
be to investigate the phenomenological implications of these results for 
the neutrinoless double beta decay (0νββ) and the CP violation in neutrino 
oscillations in matter.

Figure 1: For normal hierarchy. In the left graph, we show the allowed region of the 
parameters δ

l 
and δν.
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5. COnCLusiOns

In the theoretical framework of Two Higgs Doublet Model type III plus 
massive neutrinos (2HDM-III+3ν), we shown that can be done we outlined 
a unified treatment for the fermion mass matrices in the theory. The active 
neutrinos are considered as Majorana particles and their masses are computed 
through the type-I seesaw mechanism, where the right-handed neutrinos are 
introduced in the model as a singlet under the action of the gauge group 
of the Standard Model. In such a treatment, the mass matrices of Dirac 
and right-handed neutrinos are represented with a four-zero texture ansatz, 
which implies that the mass matrix of left-handed neutrinos have also this 
shape with four-zero texture. In fact, all Dirac fermion mass matrices are 
represented with the same generic Hermitian matrix with four-zero texture 
and a normal hierarchy in the mass spectrum. Theoretical expressions were 
derived for the elements of V

PMNS 
matrix in function of lepton masses, two 

phases Φ
1 
and Φ

2 
associated with the CP violation, and two parameters δν

 

and δν
 
which are related with the Yukawa matrices of 2HDM-III. From the 

theoretical relations of the differences of the squared neutrino masses, and 
the experimental results reported by the Planck Collaboration and neutrino 
oscillation experiments, we obtain the allowed values for the neutrino 
masses. The parameter space exploration is done by means of likelihood 

Figure 2: For normal hierarchy. In the left graph, we show the allowed region of the 
parameters δ

l
 and δ

v
 to 95% C.L.
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test χ2; this allowed us to find the allowed regions of the parameters δν
 
and 

δ
l 
at 70% and 95% C.L. for a normal hierarchy, as well as, the best fit point 

(BFP), and the mixing matrix V
PMNS 

at 70% C.L. Finally, it is observed that 
the mixing angle as function of δν

 
and δ

l 
are in very good agreement with 

experimental data.

ACKnOwLEDGMEnTs

This work has been partially supported by CONACYT-SNI (Mexico). ERJ 
acknowledges the financial support received from PROFOCIE (Mexico). 
F.G.C. acknowledges the financial support received from Mexican grants 
CONACYT 236394, 132059, and PAPIIT IN111115.

rEFErEnCEs

[1] Abe, Y., et al. (Double Chooz), Improved measurements of the neutrino mixing 
angle θ13 with the Double Chooz detector. JHEP, 10, 086 (2014) [Erratum: 
JHEP02,074 (2015)].

[2] Ade, P. A. R., et al. (Planck), Planck 2015 results. XIII. Cosmological parameters. 
arXiv:1502.01589 [astro-ph.CO] (2015).

[3] An, F. P., et al. (Daya Bay), Measurement of the Reactor Antineutrino Flux and 
Spectrum at Daya Bay. Phys. Rev. Lett., 116, 061801 (2015).

 http://dx.doi.org/10.1103/PhysRevLett.116.061801

[4] Atwood, D., Reina, L., and Soni, A., Phenomenology of two Higgs doublet 
models with flavor changing neutral currents. Phys. Rev. D, 55, 3156–3176 
(1997). http://dx.doi.org/10.1103/PhysRevD.55.3156

[5] Capozzi et al., Neutrino masses and mixings: Status of known and unknown 3ν 
parameters. arXiv:1601.07777 [hep-ph] (2016).

[6] Choi, J. H., et al. (RENO), Observation of Energy and Baseline Dependent Reactor 
Antineutrino Disappearance in the RENO Experiment. arXiv:1511.05849 [hep-
ex] (2015).

[7] Deppisch, F. F., Lepton Flavour Violation and Flavour Symmetries. Fortsch. 
Phys., 61, 622–644 (2013). http://dx.doi.org/10.1002/prop.201200126

[8] Dorsner, I., and Barr S. M., Flavor exchange effects in models with Abelian 
flavor symmetry. Phys. Rev. D, 65, 095004 (2002).

 http://dx.doi.org/10.1103/PhysRevD.65.095004 

[9] Felix-Beltran, et al., Analysis of the quark sector in the 2HDM with a four-zero 
Yukawa texture using the most recent data on the CKM matrix. Phys. Lett. B, 
742, 347–352 (2015). http://dx.doi.org/10.1016/j.physletb.2015.02.003

[10] Forero, D., Tortola, M., and Valle, J., Neutrino oscillations refitted. Phys. Rev. D, 
90, 093006 (2014). http://dx.doi.org/10.1103/PhysRevD.90.093006



Analysis of the 
Lepton Mixing 

Matrix in the Two 
Higgs Doublet 

Model

219

[11] Fritzsch, H., and Zhong Xing, Z., Mass and flavor mixing schemes of quarks and 
leptons. Prog. Part. Nucl. Phys., 45, 1–81 (2000).

 http://dx.doi.org/10.1016/S0146-6410(00)00102-2

[12] Gando, A., et al. (KamLAND), Constraints on θ13 from A Three-Flavor 
Oscillation Analysis of Reactor Antineutrinos at KamLAND. Phys. Rev. D, 83, 
052002 (2011). http://dx.doi.org/10.1103/PhysRevD.83.052002

[13] Gando, A., et al. (KamLAND), Reactor On-Off Antineutrino Measurement with 
KamLAND. Phys. Rev. D, 88, 033001 (2013).

 http://dx.doi.org/10.1103/PhysrevD.88.033001
[14] Krawczyk, M., and Sokolowska, D., 2007 International Linear Collider 

Workshop (LCWS07 and ILC07) Hamburg, Germany, May 30-June 3, 2007, 
eConf C0705302, p. HIG09 (2007), [141(2007)].

[15] Krawczyk, M., Proceedings, 2005 Europhysics Conference on High Energy 
Physics (EPS-HEP 2005). PoS HEP2005, 335 (2006).

[16] Olive, K. A., et al. (Particle Data Group). Chin. Phys. C, 38, 090001 (2014).
http://dx.doi.org/10.1088/1674-1137/38/9/090001

[17] Rodejohann, W., and Valle, J. W. F., Symmetrical Parametrizations of the Lepton 
Mixing Matrix. Phys. Rev. D, 84, 073011 (2011).

 http://dx.doi.org/10.1103/PhysRevD.84.073011

[18] Schechter, J., and Valle, J. W. F., Neutrino Masses in SU(2) × U(1) Theories. 
Phys. Rev. D, 22, 2227 (1980). http://dx.doi.org/10.1103/PhysRevD.22.2227

[19] Seo, S.-H., (RENO), Proceedings, 26th International Conference on Neutrino 
Physics and Astrophysics (Neutrino 2014), AIP Conf. Proc. 1666, 080002 (2015).


