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Abstract: In this paper considering the authors previously proposed SUSy 
concept - ‘fermion and boson mass ratio is close to 2.26’ and considering 
the electroweak neutral boson, an attempt is made to understand the total 
energy of revolving electron in the hydrogen atom. thus in this paper 
authors succeeded in extending the basic applications of SUSy and 
electroweak theory to atomic level. With further research and analysis, the 
hidden secrets of electroweak unification can be understood very easily.

Keywords: SUSy, Z boson, hydrogen atom, Revolving electron’s total 
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1. IntrodUCtIon 

In the earlier published papers the authors proposed that, any fermion and 
its corresponding boson mass ratio is close to 2.26 but not unity [1-7]. In 
this paper an attempt is made to understand the total energy of revolving 
electron in hydrogen atom with the help of SUSy and neutral electroweak 
boson. In this new proposal it is noticed that, bosonic form of the electron, 
bosonic form of the proton and neutral weak boson play a crucial role. 
the two interesting things are - revolving electron’s total is a function of 
geometric mean mass of proton and electron and is independent of the 
reduced Planck’s constant. But in order to understand the discrete nature 
of hydrogen spectrum it seems to be a must to consider the concept - 
“maximum number of electrons in a shell = 2n2 where n = 1,2,3,..”. 
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2. HIStorY of SUperSYmmetrY

In particle physics, supersymmetry (often abbreviated SUSy) is a 
proposed symmetry of nature [8-11] relating two basic classes of elementary 
particles: bosons, which have an integer-valued spin, and fermions, which 
have a half-integer spin. each particle from one group is associated with a 
particle from the other, called its superpartner, whose spin differs by a half-
integer. In a theory with unbroken supersymmetry each pair of superpartners 
shares the same mass and internal quantum numbers besides spin, but since no 
superpartners have been observed yet, supersymmetry must be a spontaneously 
broken symmetry. A supersymmetry relating mesons and baryons was first 
proposed, in the context of hadronic physics, by hironari Miyazawa in 1966. 
this supersymmetry did not involve space-time, that is it concerned internal 
symmetry, and was badly broken. his work was largely ignored at the time. J. 
L. Gervais and B. Sakita (in 1971), yu. A. Golfand and e. P. Likhtman (also in 
1971), and D.V. Volkov and V.P. Akulov (in 1972), independently rediscovered 
supersymmetry in the context of quantum field theory, a radically new type of 
symmetry of space-time and fundamental fields, which establishes a relationship 
between elementary particles of different quantum nature, bosons and fermions, 
and unifies space-time and internal symmetries of the microscopic world. 
Supersymmetry with a consistent Lie-algebraic graded structure on which the 
Gervais-Sakita rediscovery was based directly first arose in 1971 in the context of 
an early version of string theory by Pierre Ramond, John h. Schwarz and André 
Neveu. Finally, J. Wess and B. Zumino (in 1974) identified the characteristic 
renormalization features of four dimensional supersymmetric field theories, 
which singled them out as remarkable QFts, and they and Abdus Salam [12] 
and their fellow researchers introduced early particle physics applications. 
the mathematical structure of supersymmetry (Graded Lie superalgebras) 
has subsequently been applied successfully to other areas of physics, in a 
variety of fields, ranging from nuclear physics, critical phenomena, quantum 
mechanics to statistical physics. It remains a vital part of many proposed 
theories of physics. the first realistic supersymmetric version of the Standard 
Model was proposed in 1981 by howard Geogi and Savas Dimopoulos and 
is called the Minimal Supersymmetric Standard Model or MSSM for short. 
It was proposed to solve the hierarchy problem and predicts superpartners 
with masses between 100 GeV and 1 teV. Supersymmetry is also motivated 
by solutions to several theoretical problems, for generally providing many 
desirable mathematical properties and for ensuring sensible behavior at high 
energies. Supersymmetric quantum field theory is often much easier to analyze, 
as many more problems become exactly solvable. When supersymmetry is 
imposed as a  localsymmetry, einstein’s theory of general relativity is included 
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automatically, and the result is said to be a theory of supergravity. It is also a 
feature of a candidate of a theory of everything, superstring theory.

3. CUrrent StAtUS of SUSY

the Large hadron Collider at CeRN is currently producing the world’s highest 
energy collisions and offers the best chance at discovering superparticles for 
the foreseeable future. As of September 2012, no meaningful signs of the 
superpartners have been observed. the failure of the Large hadron Collider to 
find evidence for supersymmetry has led some physicists to suggest that the theory 
should be abandoned. experiments with the Large hadron Collider yielded 
an extremely rare particle decay event, casting doubt on the scientific theory 
of supersymmetry. Supersymmetry differs notably from currently known 
symmetries in that its corresponding conserved charge (via Noether’s theorem) 
is a fermion called a supercharge and carryingspin-1/2, as opposed to a scalar 
(spin-0) or vector (spin-1). A supersymmetry may also be interpreted as new 
fermionic (anticommuting) dimensions of spacetime, superpartners of the 
usual bosonic spacetime coordinates, and in this formulation the theory is said 
to live in superspace.

Currently there is only indirect evidence for the existence of supersymmetry, 
primarily in the form of evidence for gauge coupling unification. A central 
motivation for supersymmetry close to the teV energy scale is the resolution of 
the hierarchy problem of the Standard Model. Without the extra supersymmetric 
particles, the higgs boson mass is subject to quantum corrections which are so 
large as to naturally drive it close to the Planck mass barring its fine tuning to 
an extraordinarily tiny value. In the supersymmetric theory, on the other hand, 
these quantum corrections are canceled by those from the corresponding 
superpartners above the supersymmetry breaking scale, which becomes 
the new characteristic natural scale for the higgs mass. Other attractive 
features of teV-scale supersymmetry are the fact that it often provides a 
candidate dark matter particle at a mass scale consistent with thermal relic 
abundance calculations, provides a natural mechanism for electroweak 
symmetry breaking and allows for the precise high-energy unification of 
the weak, the strong and electromagnetic interactions. therefore, scenarios 
where supersymmetric partners appear with masses not much greater than 
1 teV are considered the most well-motivated by theorists. these scenarios 
would imply that experimental traces of the superpartners should begin to 
emerge in high-energy collisions at the LhC relatively soon. As of 2012, no 
meaningful signs of the superpartners have been observed, which is beginning 
to significantly constrain the most popular incarnations of supersymmetry 
[13]. 
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4. WeAK InterACtIon

In particle physics, the weak interaction is the mechanism responsible for 
the weak force or weak nuclear force, one of the four fundamental interactions of 
nature, alongside the strong interaction, electromagnetism, and gravitation 
[14]. the theory of the weak interaction is sometimes called quantum 
flavordynamics (QFD), in analogy with the terms QCD and QeD, but in 
practice the term is rarely used because the weak force is best understood 
in terms of electro-weak theory (eWt). In the Standard Model of particle 
physics the weak interaction is caused by the emission or absorption 
of Wand Z bosons [15,16]. All known fermions interact through the weak 
interaction. Fermions are particles one of whose properties, spin, is a half-
integer. A fermion can be an elementary particle, such as the electron; or it 
can be a composite particle, such as the proton. W and Z bosons are much 
heavier than protons or neutrons and this heaviness means that the weak force 
has a very short range. the force is termed ‘weak’ because its field strength 
over a given distance is typically several orders of magnitude less than that 
of the strong nuclear force and electromagnetism. the weak interaction is 
responsible for the existence and structure of atomic nuclei, and is responsible 
for both the radioactive decay and nuclear fusion of subatomic particles. Most 
fermions will decay by a weak interaction over time. Important examples 
include beta decay, and the production of deuterium and then helium from 
hydrogen that powers the sun’s thermonuclear process. Such decay also 
makes radiocarbon dating possible, as carbon-14 decays through the weak 
interaction to nitrogen-14. It can also create radio luminescence, commonly 
used in tritium illumination, and in the related field of betavoltaics. Quarks, 
which make up composite particles like neutrons and protons, come in six 
“flavours’’ - up, down, strange, charm, top and bottom – which give those 
composite particles their properties. the weak interaction is unique in that it 
allows for quarks to swap their flavour for another. For example, during beta 
minus decay, a down quark decays into a up quark, converting a neutron to a 
proton. In addition, the weak interaction is the only fundamental interaction 
that breaks parity-symmetry, and similarly, the only one to break CP-
symmetry.

5. modIfIed SUper SYmmetrY

In modified Super symmetry, the authors already proposed and established 
that [1-7], 

1. Fermion and its corresponding boson mass ratio is close to 2.2627 but not 
unity. 
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m

m
f

b

≅ ≅Ψ 2 2627.  (1)

 here, m
f 
represents the mass of fermion and m

b
 represents its corresponding 

mass of boson and Ψ is the proposed empirical SUSy ratio to be estimated 
with a suitable theory [1,2] or to be fitted from particle mass data [17]. 
this idea can be applied to leptons, quarks and nucleons. 

2. All the observed mesons are SUSy bosons only [3]. 
3. Presently believed charged electroweak boson is nothing but the top quark 

boson [1,2, 17]. 
4. there exists a charged higgs fermion of rest mass mXf  and its corresponding 

charged higgs boson mass is[1,2,7] 

 m
m

Xb
Xf≅
Ψ

  (2)

5. Charged higgs boson pair generates the observed [17] electroweak 
neutral boson, mZ( )  . Based on this idea, Charged higgs boson 

rest energy can be expressed as m c
m c

Xb
Z2

2

2
45594≅ ≅  MeV and 

its corresponding higgs fermion rest energy can be expressed as 

m c m c
m c

Xf Xb
Z2 2

2

2
103150≅ ≅










≅Ψ Ψ  MeV  . 

6. Charged higgs boson and the presently believed charged electroweak boson 
jointly generates a neutral boson of rest energy 126 GeV [1,2,17,18].

In particle physics authors explained the various applications of this modified 
SUSy in the published papers [1-7]. In the following section an attempt is 
made to estimate or fit the total energy of electron in hydrogen atom. 

6. to UnderStAnd tHe totAl energY of eleCtron In 
HYdrogen Atom

It is noticed that, neutral electroweak boson plays an interesting role in 
estimating the total energy of electron. It can be understood in the following 
way. Let E

P
, E

K 
and E

T
 represent the revolving electron’s, potential, kinetic 

and total energies respectively in any orbit or shell [19,20] . If m
p
, m

e
 and 

m
z
 represent the rest masses of proton. electron and neutral weak boson 

respectively, it is noticed that,

  (3)E
m m

m

m c

nP

p e

Z

e≅−
( )











Ψ 2

22
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Accuracy point of view, here LhS is equal to 27.2114 eV and RhS is equal to 
27.118 eV and error is 0.34%. here in this relation please note the following 
5 points.

A)  Ψ ≅ 2 26237. is the proposed empirical super symmetric fermion and boson 
mass ratio [10,11] . 

B) In the ratio 
m m

m

p e

Z

Ψ( )










, 

m m m m
m

p e p e

Ψ Ψ Ψ
≅
















 ≅ ε

can be considered as 

the geometric mean mass of the bosonic form of the proton 
mp

Ψ










 and the 

bosonic form of the electron 
me

Ψ








 . So far authors could find many evidences 

for the independent existence of 
mp

Ψ










 but could not find the evidence for 

the independent existence for me

Ψ









. It is for further study. If one is willing 

to replace the electron mass by the Muon mass [17], automatically charged 

pion mass can be fitted as 
m mp m

Ψ
≅ 139 2.  MeV . This is one best evidence 

for the proposed new Susy concepts. In reference [1] authors proposed that 
strange quark boson rest energy is 67.4 MeV. Strange quark boson pair 
generates the observed neutral pion of rest energy 135 MeV. 

C) mp

Ψ










≅ 415 MeV boson plays a crucial role in understanding the presently 

believed strange mesons and light vector mesons. It’s first excited state 
is 2 415 493

1

4( ) ≅.  MeV and can be compared with the charged strange K 
meson. It couples with up boson of rest energy 1.94 MeV and generates a 
neutral ground state meson with 417 MeV. First excited state of 417 MeV 
is 2 417 496

1

4( ) ≅.  MeV  and can be compared with the neutral K meson 
[1]. 415 MeV pair generates a neutral meson of rest energy 830 MeV. 
Its first excited state is 2 830 987

1

4( ) ≅.  MeV.  415 MeV couples with up 
quark meson [1,2] of rest energy 368 MeV and generates 783 light meson. 
Similarly it couples with down quark meson of rest energy 475 MeV and 
generates 890 light meson. 

D) Please be noted that
 

m m c
m c

p e
2

2 9 68
Ψ

≅ ≅ε .  MeV can be considered as the 
ground state of the charged Pion and can be called as the EPION [3]. Here 
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one may ask the fundamental questions -1) So far why could not we see 
the boson 9.68 MeV. 2) What is the significance of the proposed 9.68 MeV 
boson in nuclear physics? Here authors emphasize the fact that, 9.68 MeV 
can be considered as the ground state nuclear force carrier and plays a 
crucial role in binding the nucleons. Based on this proposal semi empirical 
mass formula energy coefficients can be fitted very easily. For detailed 
information please see section (8). 

e) At n = 1,2,3... (2n2) represents the total number of electrons in any principle 
quantum number or quantum shell. Please be noted that, in Hydrogen 
atom, only one electron may be existing but from ‘atomic nature’ point of 
view, (2n2) may be given some role in this relation. From modern theory of 
Hydrogen atom, maximum number of electrons that can be accommodated 
in any principal quantum shell are (2n2) where n=1,2,3. This proposal can 
be reinterpreted as follows: In Hydrogen atom, in n principal quantum 
shell, electron can exist in (2n2) different states.

By any reason, if kinetic energy is equal to half the magnitude of potential 
energy, then

 E
m m

m

m c

nK

p e

Z

e≅
( )











Ψ 2

24
 (4)

Now total energy of electron in any principle quantum shell can be 
expressed as

 E E E
m m

m

m c

nT P K

p e

Z

e≅ + ≅−
( )











Ψ 2

24
 (5)

Now based on the jumping nature of electron, in hydrogen atom, emitted 
photon’s energy can be expressed as

  E
m m

m

m c

n nPhoton

p e

Z

e≅
( )










−











Ψ 2

1
2

2
24

1 1


 (6)

where n
2
 > n

1
. In all these relations one very interesting thing is that, rest mass 

of proton and rest mass of electron jointly play a crucial role in estimating the 
revolving electron total energy. Another interesting thing is that in all these 
relations accuracy mainly depends upon the SUSy number Ψ( ) . If one is 
willing to think in this direction, Ψ( )  can also be fitted accurately from these 
relations also. If so its value will be close to 2.254.

7. BoHr rAdII In HYdrogen Atom

Now from above expressions, in hydrogen atom, Bohr radii can be expressed 
as
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 a n
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m m

e

m cn
Z

p e e

≅( )
( )












2

4
2

2

0
2

Ψ πε
 (7)

this is a very interesting expression and is very simple to understand and to 
easy to analyze. From this relation, electron’s revolving velocity in any orbit 
or shell can be expressed as

 v
n

m m

m
cn

p e

Z

≅
( )

⋅
1

2 2

Ψ
 (8)

Angular momentum of electron in any orbit or shell can be expressed as

 m v a n
m

m m

e

ce n n
Z

p e

≅
( )

⋅2
4

2
2

0Ψ πε
 (9)

At n = 1 the fine structure ratio can be expressed as

 α≅
( )

≅
( )1

2 2

m m

m

m m

m

p e

Z

p e

Z

Ψ Ψ
 (10)

8. to fIt And Co-relAte tHe SemI empIrICAl mASS 
formUlA energY CoeffICIentS WItH tHe propoSed 9.68 
meV proton-eleCtron SUSY BoSon

In nuclear physics, the semi-empirical mass formula is used to approximate the 
mass and various other properties of an atomic nucleus. As the name suggests, 
it is based partly on theory and partly on empirical measurements [21-23]. the 
theory is based on the liquid drop model proposed by George Gamow, which 
can account for most of the terms in the formula and gives rough estimates 
for the values of the coefficients. It was first formulated in 1935 by German 
physicist Carl Friedrich von Weizsacker, and although refinements have been 
made to the coefficients over the years, the structure of the formula remains the 
same today. It gives a good approximation for atomic masses and several other 
effects, but does not explain the appearance of magic numbers. In modern 
nuclear physics the corresponding semi empirical relation can be expressed 
as follows. 

  B a A a A a
Z Z

A
a

A Z

A

a

A
v s c a

p= − −
−
−

−
±2 3

1 3

21 2/
/

( ) ( )
 (11)
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here a
v
= volume energy coefficient, a

s
 is the surface energy coefficient, a

c
 is 

the coulomb energy coefficient, a
a
 is the asymmetry energy coefficient and a

p
 

is the pairing energy coefficient.

Let 
m m

m
kn p

e

−
≅ ( )≅ln 4π  (12)

here, m
n
, m

p
, and m

e
 represent the rest masses of neutron, proton and electron 

respectively. this is a discovery and is an accurate relation. Let

 Ψ ≅ ≅
±

m m

m

p µ

π

2.256     (13)

where m cµ ≅105 66 2. / MeV is the rest mass of muon and m cπ
± ≅139 57 2. / MeV  

is the charged pion rest mass. Let

 E m c
m m

c
m

m
m cx xb

p e e≅ ≅ ≅ ⋅ ≅±2 2 2 9 7
Ψ µ

π .  MeV  (14)

It can be considered as the ground state nuclear force carrier. With this energy 
unit SeMF energy coefficients can be fitted in the following semi empirical 
approach. 

a) the coulombic energy coefficient can be expressed in the following way. 

 a e Ec
k

x≅ ≅− 0 772.  MeV  
(15)

b) the asymmetry energy coefficient can be expressed in the following way. 

 a a

E
k a kE a k ea c

x
a x c

k+
≅ → ≅ − ≅ −( ) ≅ ≅− e  MeV 23.8 MeVx 23 78.  (16)

c) the pairing energy coefficient can be expressed as 

 
a ap a≅ ≅ ≅

1

2
11 89.  MeV 11.9 MeV

 
(17)

d) the surface energy coefficient can be expressed as 

 a
a a

as
a p

c≅
+

+ ≅ ≅ ≅
2

2 19 38 19 4. . MeV 2e  MeVx  
 
(18) 

e) the volume energy coefficient can be expressed as
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a

a a
av

a p
c≅

+
− ≅ ≅

2
2 16 29.  MeV 16.3 MeV

 
(19) 

thus  a a
a a

as v
a p

c,( )≅
+

±
2

2  (20)

 a a a a av s p a p+ ≅ + ≅ 3  (21)

For light and heavy atoms (including super heavy stable isotopes), proton-
nucleon stability relation can be expressed as

 A Z e Z Z Z
a

E
Z

Z
S

k c

x

≅ +( ) ≅ + ⋅









≅ +








−2 2 2
4

2
2 2

π
 (22)

table-1: to fit the stable mass numbers of Z 

S.No Z A
S

1 21 44.80

2 29 63.33

3 37 82.67

4 47 108.0

5 53 123.79

6 60 142.80

7 69 168.15

8 79 197.52

9 83 209.62

10 92 237.60

11 100 263.33

12 112 303.43

where A
S
 can be considered as the stable mass number of Z and 

 A Z e Z
Z

S
k− ≅( ) ≅







−2
4

2
2

π
 (23)
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Please see table-1 for fitting the proton number and its corresponding stable 
mass number. 
Please see table-2 for the comparison of the semi empirical mass formula 
energy coefficients. 

Please see table-3 for the obtained semi empirical mass formula based 
nuclear binding energy. 

9. dISCUSSIon And ConClUSIonS

It is very interesting to that, the above given expressions are very simple to 
understand and very simple to implement. In physics history it is already well 
established that, electroweak bosons play a crucial role in neutron - proton 
decay. Now it is also very clear that, the electroweak neutral boson plays a 
crucial role in understanding the presently believed electromagnetic interaction 
that connects proton and the electron. thus in this paper authors made a 
successful attempt to extend the basic applications of SUSy and electroweak 
theory to atomic level. One very interesting thing is that, all the proposed 
expressions are independent of the famous reduced Planck’s constant. In this 

table-2: existing and proposed SeMF binding energy coefficients.

existing 
energy 

coefficients

av ≅15 78.
MeV

av ≅18 34.
MeV

ac ≅ 0 71.
MeV

aa ≅ 23 21.
MeV

ap ≅12 0.
MeV

proposed 
energy 

coefficients

av ≅16 3.
MeV

av ≅19 4.
MeV

ac ≅ 0 772.
MeV

aa ≅ 23 8.
MeV

ap ≅11 9.
MeV

table-3: to fit SeMF binding energy.

Z A (BE)cal in meV (BE)meas in meV

26 56 492.5 492.254

28 62 546.9 545.259

34 84 728.1 727.341

50 118 1006.8 1004.950

60 142 1182.6 1185.145

79 197 1553.0 1559.40

82 208 1623.2 1636.44

92 238 1799.8 1801.693
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regard with further research and analysis, other hidden secrets of electroweak 
unification can be understood [24,25] easily. Now the fundamental question to 
be answered is – how to extend these relations to other atoms where Z > 1?. 
Authors are working in this new direction and will be discussed in near future. 
If one is willing to the consider the concepts (Zm

p
) and (Zm

e
), with reference to 

the relation (3), where Z > 1, potential energy of one electron can be expressed 
as follows.

 E
Zm Zm

m

Zm c

n
Z

m m
P

p e

Z

e p e
≅−

( )( )( )











≅−
(Ψ Ψ2

2
2

2

))









m

m c

nZ

e
2

22
  (24)

Similarly with reference to the relation (5), where Z > 1, total energy of 
one electron can be expressed as follows.

 E
Zm Zm

m

Zm c

n
Z

m m
T

p e

Z

e p e
≅−

( )( )( )











≅−
(Ψ Ψ2

2
2

4

))









m

m c

nZ

e
2

24
 (25)
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