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Abstract: In this paper, Landau theory for phase transitions is shown to 
be a useful approach for quantal system such as atomic nucleus. A detailed 
analysis of critical exponents of ground state quantum phase transition 
between U(5) and O(6) limits of interacting boson model is presented. Our 
results suggest a similarity between these two frameworks and a second 
order phase transition between these limits based on a discontinuity in the 
heat capacity.
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1. InTroduCTIon

Studying the behavior of nuclear matter under extreme conditions of 
temperature and density, including possible phase transitions, is one of the 
most interesting subjects in recent years. Drastic changes in the properties 
of physical systems are called phase transitions which these properties have 
been characterized by order parameters. Phase transitions occur as some 
of parameters, i.e. control parameters, which have constrained system, 
are varied. temperature-governed phase transitions in which the control 
parameter is temperature, T, have been known for many years [1]. Landau 
theory of phase transitions [2-3] was formulated in the late 1930’s as an 
attempt to develop a general method of analysis for various types of phase 
transitions in condensed matter physics and especially in crystals. It relies on 
two basic conditions, namely on (a) the assumption that the free energy is an 
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analytic function of an order parameter and on (b) the fact that the expression 
for the free energy must obey the symmetries of the system. Condition (a) is 
further strengthened by expressing the free energy as a taylor series in the 
order parameter.

For fluid systems, as we become close to the critical point, some of the quantities 
of system are related to the temperature as f T T Tc( ) ( )≈ − β  for some exponents 
of β . thesimilar behaviors may be seen not as a function of temperature but as 
a function of some other quantities of system, e.g. f x x( ) ( )≈ β. these exponents, 

β , are called critical exponents and naturally defined as
 
lim

ln ( )

ln( )x

f x

x→ ±0
, [4]. Some 

basic critical exponents in thermodynamics have been employed to describe the 
evolution of considered systems near the critical points [5-6].

2. QuAnTuM PhAsE TrAnsITIon In ThE InTErACTIng 
Boson ModEL (IBM)

In nuclear physics, quantum phase transitions, sometimes called zero 
temperature or ground-state phase transitions can be studied most easily 
with using algebraic techniques that associate with a specific mathematical 
symmetry with different nuclear shapes. Interacting boson Model (IbM) as 
the most popular algebraic model in description of nuclear structures was 
proposed in 1975 by Iachello and Arima to describe the collective excitations 
of atomic nuclei [7-10]. In this model, nucleons in an even-even isotope are 
divided into an inert core and an even number of valence particles. these 
particles are then considered as coupled into two kinds of bosons that may 
carry either a total angular momentum 0 or 2, and are respectively called the 
s- and d-bosons. the bilinear operator that may be formed with s- and d-boson 
creation and annihilation operators close into the U(6) algebra whose three 
possible subgroup chain match with the U(5), SU(3) and SO(6) solution of 
the bohr Hamiltonian, i.e. respectively with spherical, axially deformed and 
γ-unstable shapes. It is of great interest to be able to describe the evolution of 
considered systems near the critical points. Let’s consider a general form of 
IbM Hamiltonian as [7].

 H n k Q Q k p p k L L k T T k T Td d= + + + + += =ε χ χˆ ˆ . ˆ ˆ . ˆ ˆ. ˆ ˆ . ˆ ˆ . ˆ†
0

0 0
1 2 3 3 3 4 4 4  (1)

where 
ˆ ( . )†n d dd =  

 is the d boson number operator and Q̂χ=0 , i.e. 
( s d d s† † ( ))× + ×



2 explores the quadrupole interaction. Also, other terms of 
Hamiltonian are
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 ˆ ( . . )† † † † †P d d s s= −
1

2
            ,                          ˆ̂ ( )† ( )L d d= ×10 1                (2)

 
ˆ ( ) ˆ ( )† ( ) † (T d d T d d3

3
4= × = ×            ,                    

44)

 

this general Hamiltonian can describe three dynamical symmetry limits 
with different values of constants, i.e. ε0 , 

χ and ki
’ s. We must consider a 

transitional Hamiltonian to describe the critical exponents at the critical 
point of phase transition. to this aim, we propose the following schematic 
Hamiltonians for U( ) O( )5 6−  transition [11,21]

 H xn
x

N
P Ptrans d= +

−
−

ˆ ˆ . ˆ†1

1
  ,  (3)

Where ˆ ( . )†n d dd =    and ˆ ( . . )† † † † †P d d s s= −
1

2
  

 
are introduced in 

Eqs(1-2) and we have considered εd x=  and k x N1 1 1= − −( ) / ( ) . the 
U( )5  limit of IbM is recovered via x=1  and x= 0  reproduces the O( )6   
limit. It means one can describe a continuous, e.g. second-order shape 
phase transition by changing x between these two limits. On the other 
hand, classical limit of transitional Hamiltonian, Eq.(3), is obtained by 
considering its expectation value in the coherent state[12-14]

 N s dm m m
m

N, ( )α α= +∑ 0 ,  (4)

Where
 0  

is the boson vacuum state, s† and d† are the creation operators 
of s and d bosons, respectively andαm can be related to deformation collective 
parameters,α β γ0 = cos ,α± =1 0 andα β γ± =2 2sin . the energy surface 
which follows from expectation value of transitional Hamiltonian in the 
coherent state, Eq.(4), is given by

 E N N x
x

( , ) [ ( ) ]β
β
β

β
β

=
+

+
− −

+

2

2

2

2
2

1

1

4

1

1
   ,  (5)

Critical point of considered transitional region have obtained via 
d E N d2 2

0
0( , )β β

β=
= [15] condition which gives xcritical = 0 5.  in this case. We 

show the dependence of energy surface on the order parameter, β , above 
and below of the critical point of phase transition, x

critical
, in Figure1. In 

phase transition from, U( )5  i.e. spherical limit, to O( )6 , namely, γ -unstable 
limit, one sees that, the evolution of energy surface goes from a pureto β2  
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a combination of β
2

 and β4  that has a deformed minimum. At the critical 
point of this transition, energy surface is a pure β4 . these results interpret 
that

 
d E N d2 2

0
0( , )β β

β=
= condition corresponds approximately to a ‘‘very 

flat energy surface’’, similar to what have happened for the E(5) critical 
point [16], i.e. critical point of U O( ) ( )5 6↔  transitional region. the quartic 
dependence of the energy at the critical point and  the predictions for spectra 
and B(E2) transition rates for the energy surfaces β β β

4 6 8, ,  which are called 
respectively, the E(5)- β4  , E(5)- β6 , E(5)- β8 , have been given in Refs. 
[22-23]. Some comparison of the work performed in the present letter with 
the variational method used in literature ([49], for example) is in place. 
the main difference between the two methods is that in Ref. [22,24] a trial 
potential (the Davidson potential) containing a parameter( β0 ) is chosen and 
subsequently the rate of change of the physical quantity (the rate of change 

of the energy ratios, R
E L

EL =
( )

( )2
) is maximized with respect to this parameter, 

thus determining the parameter value and the value of the physical quantity 
(the energy ratios) while in the present letter a method based on Catastrophe 
theory in combination with a coherent state analysis has been employed to 
generate the energy surfaces and the evolution of the potential energy surfaces 
with respect to β  are considered. Also, the analysis carried out in Refs. 

Figure 1: Energy surfaceswhich are determined via transitional Hamiltonian, Eq.(1). 
Different panels describe the dependence of energy surfaces on the order parameter, β, 
above and below of phase transition point, x

critical
.
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[25-26] concentrated on the spectroscopic properties  of the Ru isotopes and 
on the application of  nuclear supersymmetry for a simultaneous description 
of these nuclei. Here we have considered the geometrical behavior of  
U SO( ) ( )5 6↔  transitional Hamiltonian.

the typical behavior of the order parameter, β , at a phase transition is 
shown in Figure 2. Here β  is small and close to x

critica 
and we assume that 

energy surfaces can be expandedaround β = 0,

 E N N
x

N x
N

x( , ) [ ( ) ( ) ( ) ....]β β β=
−
+ − + − + +

1

4
2 1

12
31 192 4  ,  (6)

Or can be rewritten in the form

 E N a b c a b c( , , , ; ) ,β β β= + +2 4  (7)

the behavior of, near the critical point is determined by the signs of the 
coefficients b,c. the coefficients b,c which are functions of x, are written as 
functions of the dimensionless quantity ˆ ( ) /x x x xcritical critical= − ,

 a N
x

b Nx C
N

x=
−





 = = −

1

8 24
7 31

ˆ
, ˆ, ( ˆ)  (8)

where xcritical = 0 5. , b is represented as a series in odd powers of x̂   so that 
its sign would change at ĉs = 0 . On the other hand, the stable systems must 
have same signs on both sides of xcritical =1 2 which this requirement is equal 

to c> 0 . this means  is represented only as 7

24
N .

Figure 2: typical behavior of order parameter, β, at a second order phase transition.
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the condition for stability is that, E N a b c( , , , ; )β  must be a minimum as a 
function of β . From Eq. (7), this condition may be expressed as where terms 
above β4  are presumed negligible near  xcritical = 0 5.  [17]. For xcritical < 0 5.
, only real root is β = 0 ; on the other hand, for xcritical > 0 5. , the root β = 0  
correspond to a local maximum, and therefore not to equilibrium. the other 
two roots are found to be

 
β2 12

7
=− x̂ . Consequently, our analysis predicts, 

the equilibrium order parameter near the critical point should depend on the 
x̂ as

 β=Constant  ,× −( )x
1

2  (10)

which means, critical exponent for order parameter is 1/2. the behavior 
of β0 ( )x is depicted in Figure 3, which is in perfect agreement with general 
predictions derived in Ref. [2].

On the other hand, a very sensitive probe of phase transitional 
behavior is the second derivatives of the ground state energy (per boson) with 
respect to the control parameters [18].

 C i

i
j

( ) ( )
{ }

λ
λ
ε λ

λ
=−

∂
∂

2

2 0



 ,  (11)

( all λi s
’

 with j i≠ are kept constant). In the above discussed thermodynamic 
analogy ε λ0 ( )



 is replaced by the equilibrium value of the thermodynamic 
potential F P T0 ( , ) . In our descriptions, by use of Eq. (7), ground-state 

Figure 3:  the dependence of equilibrium deformation, β
0
 (x),(a) and the specific 

heat, C(x), (b) of the ground stateabove and below of phase transition point, x 
critical

. for 
second order phase transition.
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energies are a a
b

c
, −

2

4
 for β = 0  and β ≠ 0  respectively. From Eq. (11) the 

specific heats are

 C for x C N for x+ += = < ≠ = >( ) . ; ( ) .β β0 00 0 0 5 0
12

7
0 5  (12)

these results propose any dependence of C on x̂ either above or below of 
xcritical = 0 5. and therefore, the values for the specific heat exponents are both 
zero. Also, this result suggests a discontinuity in the heat capacity in the 
phase transition point which in the agreement by Landau’s theory. We have 
represented the behavior of specific heat in Figure 3, which one can find that 
it has a jump at the critical point.

the classification of phase transitions that we follow in this paper and that 
is followed traditionally in the IbM is the Ehrenfest classification [17,19]. In 
Ehrenfest classification, first order phase transitions appear when there exist a 
discontinuity in the first derivate of the energy with respect to the control parameter. 
Second order phase transitions appear when the second derivative of the energy 
with respect to the control parameter displays a discontinuity. It can be seen from 
Figure 4, that first derive of the energy surface has a king at x

critical
. this corresponds 

to a second order phase transition, as the second derivate is discontinuous.
In order to identify other critical exponents, according to the Landau 

theory, by use of Eq.(7), the potential energy surface becomes as [4,20].

 E a h b c( )β β β β= − + + +2 4
  (13)

Where, hβ , represents the contribution of intensive parameter, h, for 
points off the h= 0  coexistence curve. the equilibrium equation of state is 
( ) ,
∂
∂ =E

x hβ 0  which cause to (for any small h)

Figure 4: Variation of energy surface,E(β) , and its first derivative respect to order 
parameter,∂ ∂E / β  , which are presented above and below of phase transition point, 
x 

critical
.
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 h b c= +2 4 3β  (14)

On the other hand, it reduces to its former representation for h = 0 . the 
susceptibility may be found as it introduced in Ref.[4,20] , namely,

 χ
β

βˆ

ˆ

ˆ
x

x

h
Nx N− =

∂
∂








 = +1 22

7

2
 (15)

For x < 5 which we have β = 0 and consequently we get χˆ ˆ
x Nx− =1 2 , which 

gives the critical exponent equal to 1. For x< 0 5. with h= 0 , Eq.(13) gives 

β2 12

7
=− x̂ and therefore χˆ ( ˆ)x N x− = −1 4 or the critical exponent equal to 1. 

Along the critical isotherm, i.e. in the phase transition point, namely x̂= 0

, and
 

h N=
7

6
3β which this means, critical exponent is equal to 3. table 1 

summarize the values of the critical exponents.
Our results, i.e. behavior of order parameter about critical point, 

discontinuity of the second order derivative of  energy respect to order 
parameter, suggest a second order shape phase transition between U(5) and 
O(6) limits of IbM. Also, critical exponent and their capability to describe 
the order of quantum phase transition may be interpreted a new technique to 
explore shape phase transitions in complex systems.

Table 1. Critical exponents of ground state quantum phase transition between U(5)
and O(6) limits.

Critical exponent  definition values of the critical exponents

Order parameter β ββ∼ − =( ) /x 1 2

Specific heat for x x C x Ccritical> =−


ˆ α 0 for x x C x Ccritical< =
−



ˆ α
0

Susceptibility for x x xcritical x> ∼ =−χ γγˆ ( ˆ)1 1  for x x xcritical x< ∼ − =−χ γγˆ
’( ˆ)

’1 1  

Critical isotherm β δδ h1 3/ =

3. suMMAry And ConCLusIon

In this contribution, we show that, U O( ) ( )5 6↔ shape phase transition are closely 
related to Landau theory of phase transition and explore some of the analogies 
with thermodynamics. Also, a detailed analysis of the critical exponents of ground 
state quantum phase transition is presented. We find that, critical exponents in 
two frameworks are similar. based on a discontinuity in the heat capacity in the 
phase transition point, we can conclude the order of the phase transition.
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