
25

Journal of Nuclear 
Physics, Material 

Sciences, Radiation  
and Applications    

Vol. 2, No. 1  
August 2014 

pp. 25–31

DOI: 10.15415/jnp.2014.21003

The Meijer’s G-functions Convenient for Describing 
β & γ-decays

AMIR PIShkOO

Nuclear Science Research School, NSTRI, P.O. Box 14395-836, Tehran, Iran

Email: apishkoo@gmail.com

Received: January 21, 2014| Revised: March 19, 2014| Accepted: May 25, 2014

Published online: August 20, 2014 
The Author(s) 2014. This article is published with open access at www.chitkara.edu.in/publications

Abstract: The purpose of this paper is to show that the Meijer’s G-functions, 
as a very general complex functions which include all elementary, and most 
of the special functions, can describe some phenomena in nuclear physics. In 
fact, some interesting properties of Meijer’s G-functions triggered us to apply 
these functions in the processes β and γ-decay. The role of these functions is 
as “wave function” for parent and daughter nuclei.

Keywords: Meijer’s G-function, β decay; γ-decay, Special functions, 
Gamma function.

1. InTroDuCTIon

In the recent decades, Meijer’s G-functions (MGFs) has found various 
applications in different areas close to applied mathematics, such as 
mathematical physics, theoretical physics, mathematical statistics etc. Due to 
the important properties of the MGFs, it is possible to represent the solutions 
of many problems in terms of MGFs [1]. Re cently Pishkoo and Darus obtain 
G-function solutions for Reaction-diffusion equation [2], Schrödinger 
equation [3], Diffusion equation, and Laplace’s equation [4, 5], respec tively.

Stated in this way, the problems gain a general character, due to the great 
freedom of choice of orders and parameters of MGFs, in comparison to the 
other special functions. Simultaneously, the calculations have become simpler 
and unified. An evidence showing the importance of MGFs is given by the 
fact that the basic elementary functions and most of the special functions of 
Mathematical Physics, including the generalized hypergeometric functions, 
follow as its particular cases (see e.g. [1]).
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Table 1: Derivation of excited radial states of the hydrogen atom from the ground state 
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In [6] we have applied some properties of Meijer’s G-function for obtaining 
excited states (radial functions) of the hydrogen atom from ground state. Our 
results are summarized in the following table. As it is shown in Table 1, all radial 
states of hydrogen atom belong to the family of functions G0 1

1 0
,
,  which in their 

combinations the value of parameter is different.
All of these states are shown by Meijer’s G-function. Because many obtaining 

results from atomic physics can be generalized to nuclear physics, here we 
assume that the wave functions of parent and daughter nuclei are of type Meijer’s 
G-function, and then we describe β & γ-decays.

2. MEIJEr’S G-FunCTIonS

We begin with the definition of Meijer’s G-function as the following:

Definition 2.1 A definition of the Meijer’s G-function is given by the following 
path integral in the complex plane, called Mellin-Barnes type integral [1, 7, 
8, 9, 10]:
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here, the integers m;n;p;q are called “orders” of the G-function, or the 
components of the order (m;n;p;g); a

j
 and b

j
 are called “parameters” and in 

general, they are complex numbers. The definition holds under the following 
assumptions: 0≤ ≤m q and 0≤ ≤n p  where m;n,p, and q are integer numbers. 
Subtracting parameters a bj k− ≠1 2 3, , ,… for k = 1, ... ,n and j =1,2,...,m 

imply that no pole of any Γ( ), ,...,b s j mj − =1  coincides with any pole of any 
Γ( ), ,...,1 1− + =a s k nk  

Choosing m =1, n = 0, p = 0 and q = 1, in the simplest case we have
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Based on the definition, the following basic properties are easily derived:
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where the multiplying term zα  changes the parameters of the G-function. 
The derivatives of arbitrary order k can change the G-function’s orders and 
parameters:
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Similarly, if one of the aj’s j=n+1,..., p, is equal to some of the b
k
, k = 1, ..., m, 

the function has its order m,p,q reduced by 1, for example, if m p q, , ,≥1  
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3. BETA DECAY

In β-decay the charge of a nucleus changes while mass remains fixed. This 
process occurs either by the simultaneous emission of an electron and an anti-
neutrino, or a positron and a neutrino, or by the capture of an atomic electron 
with the emission of a neutrino. As an example , 34

77 Ge  decays by a series of 
β-decays to 34

77 Se , here Z increasing by one at each stage:
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4. γ-DECAY

The gamma γ-decay is the process in which an excited state of a nucleus 
transforms into a lower-energy state with the difference in energy appearing 
as electromagnetic radiation, the gamma γ-ray. γ-rays are frequently emitted 
following α and β-de cay and indicate that, just as the fission fragments are 
generally produced in excited states, both α and β-decay often lead to excited 
states of their product nuclei as well [12].

When a β-unstable nucleus decays, it may be energetically possible for 
the transition to be to an excited state of the daughter nucleus. Although the 
immediate energy release for decay to an excited state is less than that for 
decay to the ground state, there are many β-decays in which the selection rules 
make decay to an excited state more likely. The excited state will then itself 
decay, usually by γ-emission. As an example 27

60 Co  rarely decays directly to 
the ground state of 28

60 Ni , but with 99.9% probability it decays to a state with 
an excitation energy of 2.50 Mev. The β-emission is quickly followed by the 
emission of two photons with energies of 1.17 Mev and 1.33 Mev, giving a total 
γ-energy of 2.50 Mev. In almost all of the remaining 0.1% of β-decays, the 
electron emission is followed by a single-photon emission of energy 1.33 Mev. 
In many cases, emission of a number of γ-rays of different discrete energies 
is observed in radioactive decay, indicating that a number of different excited 
nuclear states must be produced. Unlike α-decay and β-decay, γ-decay does not 
produce a transformation of the nucleus to some other nuclide. In the simple 
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case that decay of a nuclide leads only to the ground and first excited states of 
a daughter, the spectrum of radiations emitted from the daughter nucleus and 
atom is relatively simple. If the parent decay populates a number of excited 
states in the daughter, however, the spectrum can become quite complex; each 
excited state can lead to the emission of γ-rays, conversion electrons, X-rays 
and Auger electron [12]. In section 5, we give postulate number 4 related to γ 
and β-decay.

5. MAIn rESuLTS

In order to use the Meijer’s G-functions as the convenient language in nuclear 
physics, we give our idea in the format of four postulates as follows:

1. Each nuclear (or atomic) state can be represented by a Meijer’s G-function 
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If each G-function specifies a nuclear state then the transitions can be 

expressed by using properties of G-functions. The equations (2.3), (2.4), 
(2.5) and (2.6) associate G-functions together.
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acts as γ-photon that gives energy to electron to shift from the initial state 

(lower energy) to the final state (higher energy) which gives another Meijer’s 
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Viceversa, if we use the following notation and interpretation:
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It acts as γ-photon that exit from atom because of transition from upper state 
to lower state. Note that an interaction of γ-rays with the matter is of type 
“atomic” interaction not “nuclear”.
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3. According to (2.4) when the operator z
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4. According to (2.5) when the G-function is symmetric in the groups of 
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gives lower energy (excited or 

ground)nuclear state. For example suppose that we want to express beta decays 
of nuclei ( )32
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terms of G-functions. Although we do not know which G-functions exactly 
describe the all nuclei, assume the following example: Using equation (2.5) 
two times gives
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and may represent β-decay by emitting electron, while using equation (2.6) 
two times gives

 G G G4 4
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,
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and may represent β-decay by emitting positron.
The postulates above demonstrate the required building blocks for 

giving newdescribing version of nuclear physics, here for γ-rays, γ-decay 
and β-decay.

rEFErEnCES

[1] V. kiryakova. Generalized Fractional Calculus and Applications, Longman, harlow, Uk 
(1994)

[2] A. Pishkoo and M. Darus. Meijer’s G-functions (MGFs) in Micro- and Nano-structures. 
Journal of Computational and Theoretical Nanoscience 10(10): 2478-2483 (2013).

[3] A. Pishkoo, and M. Darus. G-function Solutions for Schrödinger Equation in Cylindrical 
Coordinates System, Journal of Applied Mathematics 5(3): 342-346 (2014).



The Meijer’s 
G-functions 

Convenient for 
Describing 

β & γ-decays

31

[4] A. Pishkoo and M. Darus. Some Applications of Meijer’s G-functions as Solutions of 
Differential Equations in Physical Models. Journal of Mathematical Physcis, Analysis, 
Geometry 3(9): 379-391 (2013).

[5] A. Pishkoo and M. Darus. G-function Solutions for Diffusion and Laplaces Equations, 
Journal of Advances in Mathematics 4(1): 359-365 (2013).

[6] A. Pishkoo. The simplest Meijer’s G-function G0 1
1 0
,
,  as the radial functions of the hydrogen 

atom, Bulletin of Society For Mathematical Services & Standards 3(2):1-5 (2014).

[7] L. Andrews Special Functions for Engineers and Applied Mathematicians. New York: 
Macmillan (1985).

[8] Y. Luck The Special Functions and Their Approximations. Complex Vari ables. New York: 
Academic press (1969).

[9] R. Askey Meijer’s G-function. Cambridge: Cambridge University Press (2010).

[10] A. klimyik Meijer’s G-function. Berlin: Springer (2001).

[11] W.N. Cottingham and D.A. Greenwood An introduction to Nuclear Physics. Cambridge 
University Press (2001).

[12] S.G. Prussin Nuclear Physics for Applications. Willey-VCh (2007).


