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Abstract: Following Green’s function technique and equation of motion 
method, the coexistence of superconductivity (SC) and itinerant ferromagnetism 
(FM) is investigated in a single band homogenous system. Self consistent 
equations for SC and FM order parameters, Δ and m or I respectively are 
derived. It is shown that there generally exists a coexistent (Δ ≠ 0, and m 
or I ≠ 0) solutions to the coupled equations of the order parameter in the, 
temperature range 0 < T < min(T

C
, T

FM
), where T

C
 and T

FM
 are respectively the 

superconducting and ferromagnetic transition temperatures. Expressions for 
specific heat, density of states, free energy and critical field are derived. The 
specific heat has linear temperature dependence as opposed to the exponential 
decrease in the bCS theory. The density of states for a finite m increases as 
opposed to that of a ferromagnetic metal. Free energy study reveals that FM-
SC state has lowest energy than the normal FM state and therefore realized 
at low enough temperature .Effect of small external field is also studied. The 
theory is applied to explain the observations in uranium based intermetallics 
systems UCoGe and UIr. The agreement between theory and experiments is 
quite encouraging.

Keywords: Itinerant ferromagnetism, Green’s function, Superconductivity, 
Energy spectra and density of states, bCS hamiltonian,  
hubbard hamiltonian. 
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1. InTroducTIon

The recent discovery the coexistence of superconductivity (SC) and itinerant 
ferromagnetism (FM) in uranium based intermetallics compounds: uGe

2
 

[1], uRhGe [2], uIr [3] and uCoGe [4] have attracted a great interest and 
revived the interest in the old problem of coexistence of superconductivity and 
ferromagnetism [5-9]. In these uranium intermetallics magnetism has a strong 
itinerant character and both ordering phenomena are carried by the same 5f 
electrons. The experiments indicate that in these materials:

The superconducting phase is completely covered within the ferromagnetic (i) 
phase and disappears in the paramagnetic phase.
The ferromagnetic order is stable within the superconducting phase.(ii) 
The specific heat anomaly associated with the superconductivity in these (iii) 
materials appears to be absent. The specific heat depends on the temperature 
linearly at low temperature [10].

Numerous theoretical studies have tried to answer the question what the 
attractive forces are between the electrons leading to the formation of Cooper 
pairs [11-32]. The general features of the proposed models are:

The superconducting pairing of the conduction electrons is mediated by (i) 
spin fluctuations rather than by phonons, as is the case in conventional 
superconductors.

In the superconducting state quasiparticles form Cooper pairs in which the (ii) 
spins are parallel (S = 1) in contrast to conventional superconductors with 
opposite spin (S = 0).
The ferromagnetism is itinerant and therefore carried by the conduction (iii) 
electrons. This arises from a splitting of the spin-up and spin-down band. 
A consequence is that the ferromagnetism and superconductivity is carried 
by same electrons.

Early theories proposed magnetically mediated spin – triplet 
superconductivity [27]. Suhl [19], Zhou and Gong [24 ], Mineev and 
Champel [17] have also favoured magnetically mediated spin – triplet 
superconductivity in these systems. Following Suhl’s work [19], Abrikosov 
[20] have shown that this mechanism can lead only to an s – wave order 
parameter. Superconductivity appears together with ferromagnetism but 
persists only until the ferromagnetism is weak. watanable and Miyake [13] 
are of the opinion that the superconductivity in these systems is mediated 
by the coupled charge density wave (CDw) and spin density wave (SDw) 
fluctuations originating from the CDw ordering of the majority - spin band. 
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Powell et al. [25] have considered spin singlet and spin triplet states with 
either equal spin pairing (ESP) or opposite spin pairing (OSP) states. They 
found that gap equations for the singlet state reproduced the Clogston – 
Chandrasekhar limiting behaviour [33,34] and the phase diagram of the 
baltensperger – Sarma equation [35,36]. They also showed that the singlet 
gap equation leads to the result that the superconducting order parameter is 
independent of exchange splitting at zero temperature. They further found 
that OSP triplet states showed a very similar behaviour to the singlet state 
in the presence of exchange splitting. blagoev et al. [26] have studied the 
problem in terms of diagrammatic many – body theory, on the basis of the 
itinerant electron model. Machida and Ohmi [11] have given arguments for 
the pairing to be of p – wave, normally spin – triplet nature. It is not obvious 
from these considerations why the superconductivity is observed only in 
the ferromagnetic phase. To explain this Sandeman et al. [14 ] proposed 
a density of states effect that exists only in the ferromagnetic phase, as 
the source of the superconductivity in uGe

2
. Kirkpatric et al. [15,16] 

proposed an explanation for the observed phase diagram that is based on an 
enhancement of the longitudional spin susceptibility in the ferromagnetic 
phase by magnons or magnetic Goldstone modes. Most theories which 
describe ferromagnet close to a quantum phase transition have predicated 
that the superconducting transition temperature, T

c
, should be at least as 

high in the paramagnetic state as it is in the ferromagnetic state. These 
theories have considered an electronically three – dimensional ferromagnet, 
either magnetically isotropic [21] or uniaxial [23].

Kirkpatrick et al [15,16] have predicated an enhancement of the 
superconducting transition temperature T

c
 in the ferromagnetic regime 

from the coupling of magnons to the longitudinal magnetic susceptibility. 
however, the ferromagnetic state of these systems is highly anisotropic – at 
4.2 K and an external magnetic field of 4T, the easy – axis magnetization 
is 20 to 30 times that along either of the other crystallographic axes [37] – 
so transverse modes seem unlikely to explain the exclusively ferromagnetic 
superconductivity in these systems.

Gorski et al. [38] have studied the possibility of simultaneous coexistence of 
superconductivity and ferromagnetism within the framework of the extended 
hubbard model. The main driving forces for these phenomena considered 
by these authors are kinetic interactions. They reported that even weak 
ferromagnetism, if generated by the band shift, destroys the superconductivity. 
The ferromagnetism created by a change of bandwidth can coexist with the 
singlet superconductivity. however, it seems difficult to understand the 
simultaneous coexistence of superconductivity and ferromagnetism in these 
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systems in terms of these theories and require a novel concept to understand : 
(i) how the same band electrons are responsible for both the superconductivity 
and ferromagnetism, and (ii) why the superconductivity occurs only in the 
ferromagnetic phase, i.e. what is the microscopic relationship between these 
two antagonistic phenomena? 

The theories of itinerant ferromagnetic superconductors stated above 
provide a basic understanding of the new phenomenon in these systems, but 
a microscopic theory and a satisfactory mechanism seems still lacking. 

In the present paper, we propose a simple microscopic theory of 
ferromagnetic superconductors which explain satisfactorily the observed 
features of these systems and also predict the qualitative behaviour of energy 
spectra and density of states function N(ω), superconducting order parameter 
(∆), magnetic order parameter (m), electronic specific heat, free energy , 
critical field and effect of small external field. In this class of materials, uIr 
holds a special place because it is a system in which the crystal structure 
lacks inversion symmetry. 

2. THE ModEL HAMILTonIAn

we propose the following model hamiltonian:

 h  h   h   hbCS h= + +0  (1)

with

 H K
K

0 = ∈ −{ } +∑ σ σ σ
σ

µ( )
,

C CK K  (2)

where 

 ∈ ( )= ∈( )−{ }σ µ σK K hB  (3)

 
 

σ=





1 for the spin up

-1 for the spin down  

h (= µ
0 
H) is small external field in tesla. C (C )K

+
Kσ σ  are the fermion creation 

(annihilation) operators for the block states, | K, σ >, where K is the conduction 
electron wave vector and σ is its spin. ∈(K) is the single electron energy in 
the f–band and measured from the bottom of the band and µ is the chemical 
potential. The operators C CK Kσ σ

+ , satisfy the usual fermion anti – commutation 
rules.

 h C C +C CbCS -K K K
+

K
+

K

=−∆ ( )↓ ↑ ↑ ↓∑ -  (4)
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is the bCS hamiltonian [39]. ∆ is superconducting order parameter and 
is chosen real and positive. ∆ is only a weak function of K and therefore we 
have neglected its K dependence. ∆ is determined self – consistently from 
the gap equation

 ∆= < >↑
+

↓
+∑| |g

N
C CK

K
-K  (5)

|g| (|g| > 0) is the phonon – mediated electron – electron coupling constant 
having the dimensions of energy. The summation over K is limited by the 
wave vector corresponding to Debye’s energy ωD  at the Fermi surface. < - - - 
> indicates the thermodynamic average. 

 h =
u

N
C C C Ch

  K, K
K K KK↑

+
↓
+

↓ ↑∑
'

 (6)

is the hubbard hamiltonian [40]. u is the repulsive Coulomb interaction, 
which is responsible for the ferromagnetic transition. 

Combining equations (2), (4) and (6), the model hamiltonian (1) can be 
expressed in the following mathematical form.

 

H h C C C CK B
K

K K K K
K

= ∈ − −{ } − +( )

+

∑ ∑+
− ↓ ↑

+
↑
+
− ↓

↑ ↓

µ µ σ
σ

σ σ
,

C C

u

N
C C

K K

K
+

K’

∆

++
K’ K

K,K’

C C↓ ↑∑  (7)

we define 

 nσ σ σ=
1

N
C CK

+
K

K

< >∑  (8)

and use the following notations.

 n n n= ↑+ ↓= +( )↑ ↑ ↓ ↓C C C C+ +  (9)

 m n n C C C C+ += ↑− ↓= −( )↑ ↑ ↓ ↓  (10)

 n
n

2

m

2σ

σ
σ= + =±( )1  (11)

where n is the total number of electrons per unit cell, µΒ is bohr magneton 
and µ

o  
is magnetic permeability of free space. It is proposed to solve the 

hamiltonian (7) with the help of Green’s function technique using the equation 
of motion method. 



Kakani, S.
Nuwal, A.
Kakani, S.l.

38

2.1 GrEEn’S FuncTIonS

In order to study the physical properties of itinerant ferromagnetic 
superconductors, we define electron Green’s functions for the conduction band 
electrons which are subjected to the ferromagnetic and superconducting instability. 
The electron Green’s functions are defined in the usual way as follows:

 

G  K  K  t  C  C

 i  t   C t

K K

K

↑↑ ↑
+

↑

( ) = << >>

= − ( ) < (
↑’’, ’, ;

[

’’

’’

' ω

θ )) >>↑
+,CK'  (12)

 

G  K  K  t  C  C

 i  t   C t

K K

K

↓↓ ↑
+

↓

( ) = << >>

= − ( ) < (
↓’’, ’, ;’’

’’

' ω

θ )) ( )



 >↓

+,  CK' 0  (13)

F K",K’,t) C C

 i  t  C t C

K"

+
K’

K"

+
K’

↓↑
+

− ↓
↑
+

− ↓
↑
+

= << >>

= ( ) < ( )

( ;

;

ω

θ (( )0






 >  (14)

F K",K’,t) <<C C

 i  t   C t  C

K"
K’

K"
K’

↑↓ − ↑
↓

− ↑
↓

= >>

= − ( ) < ( )

( ;

; ( )

ω

θ 0






 >  (15)

Following equation of motion method, we obtain following expressions for 
Green’s functions,

<< >>=
+ ∈ − − − ↑

− ∈ − − − ↓ +
↑ ↑

+ ( )[ ]
( ){ }

C C
h un

h un
K K’

KK’ K b

K b

,
δ ω µ µ σ

ω µ µ σ ω ∈∈ − − − ↑ −( ){ } K b

2h unµ µ σ ∆
 

(16)

 
<< >>=

+ ∈ − − + ↓

+ ∈ − − − ↑ +
↓ ↓

+ ( )[ ]
( ){ }

C C
h un

h un
K K’

KK’ K b

K b

,
δ ω µ µ σ

ω µ µ σ ω ∈∈ − − + ↓ −( ){ } K b

2h unµ µ σ ∆

 

   
  (17)

  << >> =
− ∈ − − − ↓ + ∈ − − −

− ↓

+

↑

+

( ){ } ( )
C C  

-

h un h un
K K’

KK’

K b K b

,
∆δ

ω µ µ σ ω µ µ σ ↑↑ −{ } ∆
2  

  (18)
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 2.2 corrELATIon FuncTIonS 

using the relation [5,7,41]

 
< >= + −

−
( ) ( )b t A t lim

<<A(t);b(t’)
i

-<<A(t);b(t’)>>
i

eb 1
’

i

2π
ω ∈ ω ∈

ω
−−∞

∞
∫

× −( )}  exp ’i t t dω ω

 (19)

and employing the identity,

 lim )
∈→ + ∈−

−
− ∈−










=−

0
2

1

i E

1

i E
   ( -E

K K
Kω ω

π δ ωi  (20)

one obtains the correlation function for the Green’s functions given by 
equations (16) to (18) as

 

< ↑
+

↑>= +
−

−

+
∈ − −( )+ ↓

−

C
K

C
K

f(
2

) {f(
1

) f(
2

)}

K b
h

{

α
α

α α
α α

µ µ σ

α α

1

1 2

1 2

Un
ff(

1
) f(

2
)α α−

 

or

 < ↑
+

↑>= +
+ ∈ − −( )+ ↓

−

× −

C
K

C
K

f(
2

) K b
h

{f(
1

) f(
2

)}

α
α µ µ σ

α α

α α

1

1 2

Un
 (21)

where

 
α µ µ σ1

2
2

2
=− + + ∈ − −( )+











um

2
∆ K Bh

Un

 
And

 α µ µ σ2
2

2

2
=− − + ∈ − −( )+











um

2
∆ K Bh

Un
 (22)

and f(α1) and f(α2) are Fermi functions. Similarly, one obtains the other 
correlation functions as 

 < >=
+ + ∈ − −( )+ ↓

−
−{ }↓

+
↓C C

h
f fK K

K bα α µ µ σ

α α
α α2 1

1 2
1 2

’ ’

’ ’
( ) ( )

Un ' '  (23)
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where α α1 2
’ =−  and α α2 1

’ =−  and f(α1
’ ) and f(α2

’ ) are Fermi functions. 

 < >=−
−

−{ }



↑

+
↓
+C CK’ K- ( ) ( )

∆
α α

α α
1 2

1 2f f  (24)

using these Green’s functions and correlation functions the expressions for 
various physical properties of itinerant ferromagnetic superconductors can be 
derived.

3. PHYSIcAL ProPErTIES 

3.1 SuPErconducTInG ordEr PArAMETEr (Δ) 

Δ is determined self – consistently from the gap equation

 ∆= < >↑
+

↓
+∑| |
-

g

N
C CK K

K

 (25)

|g| (|g| > 0) is the phonon – mediated electron – electron coupling constant 
having the dimensions of energy. The summation over K is limited by the 
wave vector corresponding to Debye’s energy  ωD  at the Fermi surface. < 
- - - > indicates the thermodynamic average. by substituting the correlation 
function given by equation (24).

 

1

|g|N(o)
d

or

K
 D

D 
= ∈

− +
−

+−

+

∫










µ ω

µ ω

α α βα βα

 1 1

1

1

11 2
2 1( ) e e

11

|g|N(o)
d

tanh
2

K
 

 

1

D

D

= ∈

+ ∈ − − +

×

−

+

∫
( ){ }

µ ω

µ ω

µ µ σ

βα



 1

4
2

2

2

∆ K Bh
Un

−−

= ∈

+ ∈ − +

×













( ){ }
∫

tanh
2

d

tanh

1

K
 

 

1

0

D

βα

µ σ

βα

ω 1

2
2

2

2

∆ K Bh
Un

22
tanh

2
1−













βα

 (26)

where α1 and α2 are given by equation (22).
Putting m = 0 and u = 0 in equation (26), we observe that it reduces to the 

standard bCS equation [39], 
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1

|g|N(o)

dx

x
tanh

 

 D

= ∫ 0 2

ω x

k TB C

 (27)

where k
b
 is boltzmann constant and T

c
 is superconducting critical transition 

temperature.
Analyzing the expression (26) , we see that the presence of magnetization 

reduces the volume of the phase space that is available for the Cooper pair. 
This leads to the decrease in gap at T = 0 and hence T

c
 will also be reduced 

compared to the bCS value for given values of other relevant parameters. 
Obviously, the increase in magnetization pushes the gap away from the 
Fermi surface and reduces its magnitude also [42]

Equation (26) is the general expression for the superconducting order 
parameter Δ for itinerant ferromagnetic superconductors. 

3.2 MAGnETIZATIon (m)

From equation (10), we have – 

 m= n -n↑ ↓  

Obviously, the fermions which form Cooper pairs are the same as those 
responsible for spontaneous magnetization. 

using equation (8), the above relation takes the form. 

 m
1

N

1

N
C C C CK K K K= < >− < >↑ ↑ ↓ ↓

+ +∑ ∑
K K

 (28)

using equations (21 and (23, the equation (28 takes the form.

 m 
1

N

1

e 1

1

e 1_
K

=
+
−

+











+

∑ β βE E  (29)

where 

 E   E   I K– –=  (30)

 E   E  + I K+ =  (31)

are the quasipartile energy relations. here,

 I=
Um

2
 (32)

and

 EK = + ∈ − − +












∆2
2

2
( )K Bh

Un
µ µ σ  (33)
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Now, one can write the magnetic energy splitting I between the spin – up 
and spin – down band as 

 I
um

2

u

2N
f E f E

K

= = −− +∑[ ( ) ( )]  (34)

or

 I
u

2
[f(E ) f(E )]

K

=





 −− +∑  (35)

where
 
u U

N=  and f (E) is Fermi function. 

Equation (26) is the bCS gap equation in the presence of a finite magnetization 
m. Equation (35) is the equation which determines the magnetization when 
the superconducting state may be present. here the superconducting gap 
∆ and the magnetic energy splitting I between the spin-up and spin-down 
bands are independent order parameters. The system of equations (26) and 
(34) determines the phase where the superconductivity and ferromagnetism 
coexist. 

The equations (26) and (34) have the following solutions : 

normal or paramagnetic state (i) ∆ = 0, I = 0;

ferromagnetic state (ii) ∆ = 0, I ≠ 0;

superconducting state (iii) ∆ ≠ 0, I = 0; and 

coexistent state (iv) ∆ ≠ 0, I ≠ 0.

From equations (26) and (34), we find that magnetization m and superconducting 
order parameter ∆ have dependencies such as m =m (g, u, T) and ∆ = ∆ (g, 
u, T). Moreover, they are coupled with each other through the distribution 
functions, which are also functions of m and ∆. From the numerical solutions 
of these two coupled equations (26) and (34), we will get the values of m and 
∆ to be used for the calculation of the physical properties. 

The ferromagnetic transition temperature T
FM

 can be obtained from 
Equation (29). Equation (29) cannot be solved exactly and therefore we 
evaluate it numerically.

3.3. SPEcIFIc HEAT (cS)

The electronic specific heat per atom of a superconductor is determined from 
the following relation [6,8,43].

 C C CS
K K=

∂
∂

∈ − − < >↑
+

↑∑
T N

hK B
K

1
2( )µ µ σ  (36)
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Changing the summation over K into integration and substituting the correlation 
function < >↑

+
↑C CK K , one obtains. 

or

 

C

T

2N(o)

N

1

T

S

2

 

K

D

= ∈
+







+
+∈ −

∫ d K0

2 2

2
2

1

1

ω βα βα
βα

β α

exp( )

[exp( ) ]

µµ σ µ σ

µ σ

α

b K bh h

2

+ ↓( ) ∈ −( )

+ ∈ −( )+










×

Un

h
Un

K B∆2
2

1

2

exp(( )

[exp( ) ]

exp( )

[exp( ) ]

βα
βα

α βα
βα

1

1
2

2 2

2
21 1+

−
+

















 (37)

One can solve equation (37) numerically for electronic specific heat.

3.4 EnErGY SPEcTrA And dEnSITY oF STATES 

If we compare the quasiparticle energy spectra given by equations (30) and (31) 

with the bCS energy spectrum E= ∈ +K
2 2∆ , we note that the modification 

is due to the presence of the ferromagnetic energy. we can easily verify that 
the gap appears not at the Fermi level, rather it is pushed up. Now, the energy 
spectrum is symmetrical around E = um, contrary to the bCS case where it 
was symmetric around E = 0. 

Now, we derive the expressions for the density of states. Density of states 
is one of the most important function to be determined and the one which is 
most susceptible to experimental verification as a function of the excitation 
energy ∈K  [6-8, 39].

The density of states per atom per spin, N(ω) is given by [44]

 N
 N

G G
K

ω
π

ω ω( )= + ∈ − − ∈
∈→ ↑↑ ↑↑∑lim [( , ) ( , )]

0 2

i
K i K i  (38)

here G↑↑ (K, ω) is the one particle Green’s function given by equation 
(17). From equations (38) and (17), using following relation:

 lim
∈→ + ∈−∈

−
− ∈−∈












= −∈( )

0

1 1
2

ω ω
π δ ω

i i
i

K K
K  (39)

we obtain 
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 N N
h Um

h Um

B

B

( ) ( )ω
ω µ σ

ω µ σ
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In the limit I → 0, equation (41) reduces to 
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which is same as described by the bCS theory [39].
The important effect of the magnetization is that it modifies the density 

of states, which affect the superconducting gap. we evaluate equation (42) 
numerically for obtaining density of states.

3.5 FrEE EnErGY

Alongwith the nonzero solution, describing the coexistence of ferromagnetism 
and superconductivity, there is a solution of equations (26) and (35) with a 
vanishing gap describing normal ferromagnetic state. For the transition from 
the normal ferromagnetic state to the superconducting – ferromagnetic state to 
take place the energy of the former state must be lower than the energy of the 
latter state. One can calculate the difference between two energies using the 
relation [44-53],

 
F F

V
d  

d

d
SF NF−

=







∫ ∆ ∆ ∆

∆
2

0

1

| |g
 (43)

This form is particularly convenient because equation (43) expresses 
1

g  as a function of ∆ (T), and direct substitution leads to 
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Putting u = 0 and h = 0 in equation (45), it reduces to standard bCS 
expression [11],
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where E= +∈∆2 2
K

writing equation (45) as
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where the second and fourth line is obtained with partial integration. The first 
and third terms together is just similar to the right side of the bCS gap equation 
[11], 
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The second and fourth terms can be simplified by changing variables from 
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(50)

Since ωD Bk T>> , the second and fourth integrals on the right may be 
extended to infinity. An easy calculation then shows that it equals the first 
temperature – dependent correction to the thermodynamic potential in the 
normal ferromagnetic state [11]. we have 
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In addition, it is readily verified that [11] 
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After simplification, one obtains the expression for free energy difference between 
superconducting – ferromagnetic state and normal ferromagnetic state as

 

F F

V
SF NF−

=− −

− ∈








1

2
0 0

4 0

2 2 0

0

N N

N k T dB K

D

( ) ( ) ln

( ) ln

∆ ∆
∆

∆

ω

∫∫ +
− − + + ∈ − +




























1

2
2

2
e

K Bh
Un

β µ σ
um

2
∆







+
1

3
02 2π N k TB( )( )

 (53)

where ∆
0
 is the zero temperature gap, whose value can be determined from 

 β π γ∆0 1 76= =−e .  (54)

which is a universal constant independent of the particular material. 
On further simplification, equation (53) finally takes the form 
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This shows that the superconducting ferromagnetic state has lower energy 
than the normal ferromagnetic state and therefore will be realized at low 
enough temperature [39,54 ]. , we evaluate numerically equation (55) for 
free energy.

3.6 LoW TEMPErATurE crITIcAL FIELd (Hc)

The critical field h
c 

(T) called the thermodynamic field for the transition 
between the normal ferromagnetic to superconducting ferromagnetic state is 
given by the difference of free energies [46]. 

 
HC

2

8π
=−F  F  SF NF–  (56)

A combination with equation (55), equation (56) yield 
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In the limit U → 0 and h → 0, equation (57) gives the low temperature critical 
field as 

 

h T
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













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→.

 (58)

where 
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 hc 0 4 0 0
2 1 2

( )= ( )



πN ∆

/
 (59)

is the critical field at T = 0. One can solve numerically equation (57) to get the 
behaviour of critical filed.

4. nuMErIcAL cALcuLATIonS

4.1 Superconducting and Magnetic order parameters 

Expression (26) is the expression from which we can study the variation 
of superconducting order parameter with temperature for ferromagnetic 
superconductors. using the values of parameters given in tables 1 and 2 for 
uCoGe and uIr and solving numerically, we obtain values of ∆ at various 

Table 1: Values of Various Parameters for the System uCoGe

Parameter Value references

* Crystal Structure Orthorhombic TiNiSi structure 
a = 6.845 Å
b = 4.206 Å,
c = 7.222 Å

Space group P
nma

68,69

* Curie temperature (T
FM

) 3 K 4,59,70-71

* Superconducting transition  
temperature (T

c
)

0.8 K 4,59,70-71

* Electronic Specific heat coefficient (ϒ)  0.057 J K–2 mol–1 72

* Phonon energy (ωD ) 1.7 × 10–21 J 9,73-75

* Repulsive Coulomb energy u 0.169 × 10–19 J 9,73-75

* Number of electrons per unit cell (n) 4 68

* Magnetization per atom ≅ 0.7 × 10–2 74

* Magnetic energy splitting I=
um

2









between spin up and spin down bands

≅ 1.92 × 10–21 J/atom 74

* bCS attractive interaction strength |g| 3.8 × 10–19 J/atom 73-75

* Density of States at the Fermi Surface, 
N(0)

≅ 0.24 × 1019 

per Joule per atom 
73-75

Fermi wave Vector, K 1.62 A–1 73-75
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Table 2: Values of Various Parameters for the System uIr

Parameter Value references

• Crystal structure Monoclinic Pbbi type 
structure 

(space group P2
1
)

a = 5.62 Å,
b = 10.59 Å,
c = 5.60 Å,

3

• Superconducting Transition Temperature 
(T

c
).

0.14 K 3

• Curie Temperature (T
FM

) (with low–
temperature ordered moment)

46 K at ambient pressure 75,76

• Electronic specific heat coefficient (ϒ) 0.049 J K–2 mol–1 3

• Phonon energy (ωD
)

1.68 × 10–21 J 9,73-75

• Repulsive Coulomb energy U 0.158 × 10–19 J 9,73-75

• Density of States at the Fermi Surface (N(0)) 0.22 × 1019 
per Joule per atom 

9,73-75

• BCS attractive interaction strength |g| 3.9 × 10– 19 J/ atom 9,73-75

• Number of electrons per unit cell (n) 8 9,73-75

• Magnetization per atom (m) ≅ 0.71 × 10–2 74

• Fermi wave vector, K 1.62 A–1 9,73-75

• Magnetic energy splitting I=
um

2









between spin up and spin down bands

1.68 × 10– 21 J/ atom 4,75,76

temperatures below T
C 

as shown in Table 3 and 4 and variation is shown in figs. 
1 and 2 respectively. From these graphs, we note that

Superconducting transition temperature for uCoGe and uIr are 0.8 K and (i) 
0.14 K respectively. 
∆(ii)  versus T variation is just similar to bCS. 
In comparison to bCS value of T(iii) 

c
 (T

c
bCS), T

c
 for ferromagnetic 

superconductors is slightly lower, i.e. magnetization suppresses 
superconductivity. This result is in agreement with Karchev [10,55], 
Karchev et al. [56] and linder and Sudbo [54].
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Effect of small external field (h = 0.4 T) is also studied on superconductivity. (iv) 
we observe from figs. 1 and 2 that small external field suppresses 
superconductivity.

4.2 Magnetization

Expression (29) is the expression from which we can study the variation of 
magnetization (m) with temperature for ferromagnetic superconductors. using 
the values of various parameters given in tables 1 and 2 for uCoGe and uIr 
and solving numerically, we obtain values of m at different temperature as 
given in tables 5 and 6 and the variation of m with T as shown in figs. 3 and 4 
respectively. From these graphs, we note that

(i) Curie temperature for uCoGe and uIr is 3K and 46 K respectively. 

In addition to the solutions described above, we have solved equations 
(26) and (34) for the coexistent state (∆ ≠ 0, I ≠ 0). Values of ∆ and I within 

Table 3: Superconducting order parameter (∆) for uCoGe

Temperature (T)

K

Superconducting order parameter

∆ = x × 10–21 J

Theory h = 0.4 T BcS

0.000

0.100

0.150

0.200

0.270

0.320

0.420

0.520

0.620

0.720

0.750

0.780

0.800

0.850

0.900

2.20

2.19

2.17

2.14

2.09

2.04

1.91

1.72

1.40

0.86

0.62

0.30

0.00

-

-

2.05

2.04

2.02

2.00

1.95

1.90

1.74

1.51

1.15

0.45

0.00

-

-

-

-

2.50

2.49

2.48

2.46

2.41

2.37

2.25

2.10

1.86

1.49

1.34

1.15

1.00

0.55

0.00



Theoretical Study 
of Interplay 

between 
Superconductivity 

and Itinerant 
Ferromagnetismy

53

Table 4: Superconducting order parameter (∆) for uIr

Temperature (T)

K

Superconducting order parameter

∆ = x × 10–21 J

Theory h = 0.4 T BcS

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

0.100

0.110

0.120

0.130

0.140

0.150

0.160

1.400

1.400

1.400

1.380

1.350

1.301

1.247

1.160

1.072

0.960

0.819

0.640

0.452

0.235

0.000

-

-

1.250

1.240

1.230

1.200

1.160

1.094

1.018

0.924

0.806

0.676

0.520

0.350

0.165

0.000

-

-

-

1.700

1.700

1.690

1.676

1.651

1.614

1.553

1.486

1.393

1.300

1.180

1.050

0.880

0.680

0.470

0.230

0.000

Figure 1: Variation of superconducting order parameter (∆) with temperature (T) for  
uCoGe. For I = 0, bCS curve is shown. 
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Figure 2: Variation of superconducting order parameter (∆) with temperature (T) for   
uIr. For I = 0, and h = 0, bCS curve is shown.

Table 5: Magnetization (m) for uCoGe 

Temperature (T)

K
Magnetization m (T)

0.000 1.9900
0.300 1.9740
0.500 1.9550
0.700 1.9400
1.000 1.9000
1.200 1.8600
1.500 1.7700
1.700 1.6920
2.000 1.5580
2.300 1.3530
2.600 0.9740
2.800 0.5960
3.000 0.0000

the coexistent state for uCoGe are given in table 7 and behaviour of ∆ and 
I is shown in fig. 5. The behaviour of ∆ and I in the coexistence region for 
uCoGe is quite unusual. 

Analysis of the expression (29) shows that the presence of magnetization 
reduces the volume of the phase space that is available for the Cooper 
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Table 6: Magnetization (m) for uIr 

Temperature (T)

K

Magnetic order parameter

m (T)
0.0 1.750
5.0 1.740
10.5 1.720
16.8 1.650
24.1 1.520
29.5 1.349

33.2 1.200
37.0 1.000
40.5 0.700
45.0 0.190
46.0 0.000

Figure 3:Variation of Magnetization with Temperature for uCoGe.

pair. This leads to a decrease in the superconducting gap (∆) and hence T
c
 

also reduces compared to the bCS value for given values of other relevant 
parameters. Obviously, increase in magnetization pushes the gap away from 
the Fermi surface and reduces its magnitude also. Our results agree with 
Karchev et al. [56] and Dahal et al. [57].
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Figure 4: Variation of Magnetization (m) with Temperature for uIr.

Table 7: Order parameters (∆, I) in the ferromagnetic, superconducting and 
ferromagnetic – superconducting coexistent states for uCoGe.

Temperature (T)

K ∆coex Icoex I ∆

0.00

0.20

0.40

0.60

0.80

0.85

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

3.00

1.90

1.89

1.87

1.85

1.80

1.78

1.72

1.63

1.52

1.40

1.24

1.05

0.85

0.65

0.45

0.00

2.20

2.15

1.90

1.13

0.24

0.00

-

-

-

-

-

-

-

-

-

-

0.40

0.46

0.50

0.40

0.00

-

-

-

-

-

-

-

-

-

-

-

0.25

0.16

0.12

0.16

0.26

-

-

-

-

-

-

-

-

-

-

-
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Figure 5: Order parameters of the ferromagnetic state (∆ = 0, I), the superconducting 
state (∆ , I = 0) and the coexistence state (∆ ≠ 0, I ≠ 0) as a function of temperature 
for uCoGe. 

Figure 6: The energy spectrum of ferromagnetic superconductors. The upper curve 
corresponds to equation (30) and the lower one for equation (31).  The upper horizontal 
line is at um + ∆ and the lower horizontal line is  at um - ∆. The gap is 2∆.

4.3 EnErGY SPEcTrA And dEnSITY oF STATES

If we compare the quasi particle energy spectra (Equations (30) and (31)) with 

the bCS energy spectrum, E= ∈ +K
2 2∆ , we sees that the modification is 

due to the presence of ferromagnetic energy. The plot of energy spectrum is 
shown in fig. 6. It is very clear that the gap is not at the Fermi level, rather it is 
pushed up. Now, the energy spectrum is symmetric around um, contrary to the 
bCS case where it was symmetrical around E = 0. 
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Figure 7: Density of States for uCoGe for ∆ = 1.15 × 10–21J  and ∆ = 1.50 × 10–21J.

Figure 8:Variation of Density of states with ω for uIr for ∆ = 1.10 × 10–21J and ∆ = 
1.30 × 10–21J.

Expressions (40) and (41) converge to the density of states of the bCS model 
for I = 0 and h = 0, i.e. 

 

N

N o

ω ω

ω
ω

ω

( )
( )
=

−
>( )

= <( )

2 2

0 0

∆
∆for

for
 

Solving numerically equation (40) for UCoGe and UIr, we obtain the variation 
of N(ω) / N(o) with ω as shown in figures 7 and 8 respectively and corresponding 



Theoretical Study 
of Interplay 

between 
Superconductivity 

and Itinerant 
Ferromagnetismy

59

Table 8: Density of states for uCoGe

ω

(x × 10–21J)

n (ω)/n(0)
BcS ∆ = 1.15 × 10–21J ∆ = 1.50 × 10–21J h = 0.4 T 

0.10

0.20

0.40

0.60

0.80

1.00

1.50

2.00

2.50

3.00

-

1.400

1.087

1.000

1.000

1.000

1.000

1.000

1.000

1.000

2.75

2.42

1.90

1.55

1.34

1.24

1.17

1.15

1.15

1.15

-

2.85

2.25

1.85

1.60

1.45

1.30

1.25

1.25

1.25

-

2.99

2.55

2.14

1.82

1.62

1.45

1.37

1.37

1.38

Table 9: Density of states for uIr

ω

(x × 10–21J)

n (ω)/n(0)
BcS ∆ = 1.10 × 10–21J ∆ = 1.30 × 10–21J

0.30

0.40

0.60

0.80

1.00

1.50

2.00

2.50

3.00

1.40

1.20

1.05

1.00

1.00

1.00

1.00

1.00

1.00

2.80

2.03

1.55

1.33

1.25

1.18

1.16

1.15

1.15

3.50

2.60

1.85

1.60

1.45

1.35

1.30

1.28

1.27

values are recorded in tables 8 and 9. We note that gap is pushed up (compared 
to BCS gap), giving rise to finite density at the Fermi level. Looking at the 
energy spectrum and density of states, one finds that the physical properties of 
the system will be dominated by the normal metal like behaviour. Our results 
agree with Dahal et al. [57], and Karchev et al. [56]. Small external field also 
pushes up ∆ and in turn density of states rise at the Fermi level. 

4.4 SPEcIFIc HEAT 

Solving numerically the expression (37) for specific heat divided by temperature 
(C/T) for uCoGe and uIr, values obtained are given in tables 10 and 11 and 
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Table 10: Specific heat divided by temperature (C/T) for uCoGe

Temperature (T)

K

c/T (mJ / mol – K2)

BcS Theory Experimental

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

1.00

0.90

2.00

5.00

8.50

13.00

20.00

30.00

45.00

80.00

10

20

30

40

50

60

70

80

-

40.00

45.71

51.43

57.14

62.86

68.57

74.29

80.00

-

Table 11: Specific heat divided by temperature (C/T) for uIr

Temperature (T)

K

c/T (mJ / mol – K2)

Theory BcS

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

8.45

16.90

25.35

33.80

42.25

50.70

60.00

-

0.90

2.50

5.20

10.00

16.50

26.00

40.20

60.00

variation of C/T versus T is obtained as shown in figures 9 and 10 respectively. 
From the graphs, we note: 

A linear temperature dependence of C/T in coexistent state of (i) 
ferromagnetism and superconductivity obtained from theory is in excellent 
agreement with experimental results for uCoGe [58] as opposed to the 
exponential decrease of specific heat in the bCS theory. Our results agree 
with Karchev et al. [56].
 Specific heat studies also confirm that T(ii) 

c
 of ferromagnetic superconductors 

is affected by magnetic field, i.e. decreases slightly as compared to bCS 
value. 
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Figure 9: Variation of Electronic Specific heat divided by temperature (C/T) for 
uCoGe. Experimental curve [4] .

Figure 10: Variation of Electronic specific heat divided by temperature (C/T) for uIr.

 4.5 FrEE EnErGY And crITIcAL FIELd 

From equation (55), we note that 

FFS – FNF ≠ 0 and         ∆2 ≠ 0

This clearly reveals that the phase transition from normal ferromagnetic 
state to superconducting -ferromagnetic state is first order phase transition 
[58].
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Table 12: Free energy difference (F
SF

 – F
NF

) in the coexistent state for uCoGe

T/Tc Free energy difference

– (FSF – FnF)

0.00 0.480

0.10 0.470

0.20 0.443

0.30 0.400

0.40 0.350

0.50 0.260

0.60 0.139

0.70 0.064

0.80 0.023

0.90 0.005

1.00 0.000

Table 13: Free energy difference (F
SF

 – F
NF

) in the coexistent state for uIr

T/Tc Free energy difference

– (FSF – FnF)

0.00 0.45

0.10 0.44

0.20 0.41

0.30 0.37

0.40 0.32

0.50 0.23

0.60 0.10

0.70 0.04

0.80 0.02

0.90 0.01

1.00 0.00

Expression (53) also shows that superconducting – ferromagnetic (SF) 
state has lower energy than the normal ferromagnetic (NF) state and therefore 
realized at low enough temperature. Our results agree with Karchev [56]. 
The free energy difference as function of temperature is shown in tables 
12 and 13 and variation shown in figures 11 and 12 for uCoGe and uIr 
respectively. From these graphs, we note that the coexistent phase of 
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Figure 11: Free energy difference (F
SF

 – F
NF

) as function of T/T
c
 for uCoGe, which 

displays coexistence of ferromagnetism and superconductivity below T
c
 = 0.8 K.

Figure 12: Free energy difference (F
SF

 – F
NF

) as function of T/T
c
 for uIr, which displays 

coexistence of ferromagnetism and superconductivity below T
c
 = 0.14 K.

superconductivity and ferromagnetism is energetically favored compared to 
normal ferromagnetic case, which is consistent with the experimental fact 
that a transition to superconductivity – ferromagnetic state occurs well below 
the Curie temperature [4,59].
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Table 14: Critical Magnetic Field (h
c
) for uCoGe

Temperature (T)

K

critical Magnetic Field

(Hc (T))

0.00 1.600
0.10 1.590
0.20 1.523
0.30 1.413
0.40 1.232
0.50 0.950
0.60 0.616
0.70 0.300
0.80 0.000

Table 15: Critical Magnetic Field for uIr

Temperature (T)

K

critical Magnetic Field

Hc(T)
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

1.00

0.97

0.92

0.84

0.74

0.60

0.39

0.00

Variation of critical field with temperature obtained numerically by solving 
equation (57) is shown in table 14 and 15 for the systems uCoGe and uIr 
and variation is shown in figures 10 and 11 respectively. Critical field curves 
reveal that physical properties of the system are dominated by normal metal 
like behaviour. 

5. concLuSIonS

In the bCS theory of superconductivity, the conduction electrons in a 
metal cannot be both ferromagnetically ordered and superconducting. 
Superconductors expel magnetic fields passing through them but strong 
magnetic fields kill the superconductivity. Even small amounts of magnetic 
impurities are usually enough to eliminate superconductivity. Much work has 
been done both theoretically and experimentally to understand the interplay 
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between ferromagnetism and superconductivity and to search for the possibility 
of true coexistence of these two ordered states. Prior to 2001, in all known 
ferromagnetic superconductors, the superconductivity phase is observed in a 
small part of the phase diagram. This situation has changed with the emergence 
of superconductivity under the background of ferromagnetic state in ZrZn

2
, 

uGe
2
, uRhGe, uCoGe and uIr. In these ferromagnetic superconductors, 

a superconducting transition takes place at a temperature T
c
 deep in the 

ferromagnetic state, i.e. well below the Curie temperature T
FM

, without 
expelling magnetic order. In uranium intermetallic compounds magnetism 
has a strong itinerant character and both ordering phenomena are carried by 
5f electrons. Thus, it is proper to study a model where the coexistence of 
both ferromagnetism and superconductivity can be described by only one 
kind of electrons. Such a model study has recently been initiated by Karchev 
et al. [56]. 

we have studied the interplay between itinerant ferromagnetism and 
superconductivity in a model single – band homogeneous system by using 
a mean – field approximation. The superconducting part is treated by bCS 
theory and the itinerant ferromagnetic part is studied with the use of hubbard 
hamiltonian. Following Green’s functions technique and equation of motion 
method, we have obtained coupled equations of superconducting gap (∆) 
and magnetization (m). The two order parameters, m and ∆ are coupled with 
each other through the distribution functions, which are also functions of m 
and ∆. we found that there are three nontrivial sets of solutions for ∆ and I 
or m : the ferromagnetic (∆ = 0, m ≠ 0), the superconducting (m = 0, ∆ ≠ 
0), and the coexistent state (∆ ≠ and m ≠ 0). 

we have closely studied the specific heat, energy spectra and density of 
states and free energy for a ferromagnetic superconductor considering that 
same electrons are responsible for both ordered states and superconductivity 
is due to s – wave pairing. 

The specific heat has a linear temperature dependence (C ∝ T) in the 
coexistence region as opposed to the exponential decrease of the specific 
heat in the bCS theory. Our result fits well the data observed experimentally 
for uCoGe. The specific heat has a linear temperature dependence as in 
the normal ferromagnetic metals, but increases anomalously at small 
magnetizations. 

Free energy studies shows that the superconducting-ferromagnetic 
coexistence state has lower energy than normal ferromagnetic state and 
therefore coexistence state is realized at low enough temperature. Moreover, 
the ferromagnetic state never appears when the superconducting state is 
already in existence. This behaviour seems to be a particular feature of 
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the itinerant –electron model. For T
c
 < T

FM
, there is a ferromagnetic to 

superconducting-ferromagnetic transition at T = T
coex

 < T
c
, where T

coex
 is the 

temperature below which superconductivity and ferromagnetism coexist. 
For T

FM
 < T

c
 and T < T

c
, the superconducting state is more stable than the 

ferromagnetic state. This means that the ferromagnetic state can never be 
reentrant when the superconducting state is already present [10,60-63]. This 
is contrary to the situation in rare earth ternary compounds ErRh

4
b

4
 and 

hoMo
6
S

8
 [60,64], where superconductivity occurs at higher temperatures, 

and at lower temperatures the ferromagnetic state may appear. 
This may be physically understood as follows: for localized ferromagnetism, 

the saturation magnetization, which depends on the magnitude of an 
individual local moment, and the Curie temperature, which depends on the 
exchange interaction between neighboring moments are not related to each 
other. The energy reduction due to the saturation magnetization may be quite 
large while the value of T

FM
 can be very small. For an itinerant system, the 

situation is quite different. both the saturation magnetization and T
FM

 are 
decided dominantly by the hubbard interaction u and the band structure. 
For a system with low T

FM
, both the saturation magnetization and the energy 

reduction due to the magnetization will certainly be small. Therefore, when, 
T

FM
 < T

c
, the itinerant ferromagnetic state is always at a disadvantage in 

energy as compared with the superconducting state. 

Figure 13: Variation of Critical Magnetic Field (h
c
) with Temperature for uCoGe.
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Figure 14:Variation of critical magnetic field (h
c
) with Temperature (T) for uIr.

Figure 15: Phase diagram of itinerant ferromagnetic superconductors.

blount and Varma [64] pointed that the electromagnetic coupling which 
results from the interaction between the superconducting d electrons and 
local magnetic moments of rare – earth ions plays a crucial role in ternary rare 
earth superconductors, ErRh

4
b

4
 and hoMo

6
S

8
. For itinerant model, however, 

both the magnetism and superconductivity come from the electrons in the 
same f band. here the main coupling is the Coulomb interaction between 
electrons, and the hubbard model is an approximate description of this 
interaction. In our work, we have treated the magnetization as uniform and 
thus the electromagnetic coupling is absent. 
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The study of the energy spectrum and the density of states reveals that the 
physical properties of the system are dominated by normal metal like behaviour. 

The itinerant electron model developed by us provides a microscopic 
relationship between ferromagnetism and superconductivity. This model 
explains satisfactorily the behaviour of specific heat, energy spectra and 
density of states, free energy, etc. Our study unambiguously shows that 
superconductivity and itinerant ferromagnetism truly coexist in these systems 
and both ordering phenomena are carried by the same 5f electrons. Free 
energy study clearly reveals that it is possible to become superconducting 
via a first – order phase transition if the system on cooling first shows 
ferromagnetism. Our results are in agreement with Karchev [55], linder and 
Sudbo [54] and Dahal et al. [57].

A possible phase diagram based on our model is as shown in fig.15.
It is well known that mean – field approximation has its limitation in 

treating ferromagnetism. we are not sure, whether and how an electromagnetic 
coupling or the coupling between superconducting electrons and magnetic 
fluctuations will be generated if the relevant part of the Coulomb interaction 
between f electrons is correctly taken into account . This question is certainly 
important and needs further investigation. For a more rigorous approach, the 
effect of magnetic fluctuations should also be considered. Since the mean 
– field theory is qualitatively correct away from T 

FM
, we expect that the 

essential features of our results should remain valid. 
we hope in the near future measurements of the electronic and magnetic 

excitation spectra in the superconducting and magnetic phases of these 
systems will reveal crucial information on the superconducting gap structure 
and pairing mechanism. uCoGe may be the first material to reveal proof for 
the existence of the long – searched spontaneous vortex phase. 

Progress in this field requires a new generation of pure crystals. up to now, 
the attempts to discover Ce ferromagnetic superconductivity have failed. 

with the discovery of weak itinerant ferromagnetic superconductors a 
new research theme in the field of magnetism and superconductivity has 
been disclosed. Research into ferromagnetic superconductors will help to 
unravel how magnetic fluctuations can stimulate superconductivity, which is 
a central theme running through materials families as diverse as the heavy 
fermion superconductors, high – T

c
 cuprates and recently discovered FeAs 

– based superconductors [65,66]. This novel insight might turn out to be 
crucial in the design of new superconducting materials. 

An interesting aspect of ferromagnetic superconductivity concerns the 
influence of ferromagnetism on macroscopic phenomena such as Meissner 
effect [38]. Other related topics for further study are superconductivity in 
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ferromagnetic domain walls and the phenomena associated with the relative 
orientation of the superconducting order parameter to the magnetization, the 
effect of superconductivity on ferromagnetic domain structure [67], etc.

6. rEFErEncES

[1] S.S. Saxena, P. Agarwal, K. Ahilan, F.M. Grosche, R.K.w. haselwimmer, M.J. Steiner, E. 
Pugh, I. R. walker, S.R. Julian, P. Monthoux, G. G. lonzarich, A. huxley, I. Sheikin, D. 
braithwaite and J. Flouquet, Nature 406, 587, (2000). http://dx.doi.org/10.1038/35020500

[2] D. Aoki, A. huxley, E. Ressouche, D. braithwaite, J. Flouquet, J.P. brison, E. lhotel and 
C. Paulsen, Nature 413, 613, (2001). http://dx.doi.org/10.1038/35098048

[3] T. Akazawa, h. hidaka, T. Fujiwara, T.C. Kobayashi, E. Yamamoto,Y. haga, R. Settai,  
Y. Onuki, J. Phys. Condens.Matter 16, l29, (2004). 

 http://dx.doi.org/10.1088/0953-8984/16/1/003;
 http://dx.doi.org/10.1088/0953-8984/16/4/l02
[4] N.T. huy, A. Gasparini, D.E. de Nijs, Y. huang, J.C.P. Klaasse, T. Gortenmulder, A. de 

Visser, A. hamann, T. Gorlach, h.V. lohneysen, Phys. Rev. lett. 99, 067006, (2007).
 http://dx.doi.org/10.1103/PhysRevlett.99.067006
[5] S.l. Kakani and S. Kakani, ‘Superconductivity’, first ed., Anshan ltd., uK, (2009).
[6] S.l. Kakani and u.N. upadhyaya, J. low Temp. Phys. 70, 5, (1988).
 http://dx.doi.org/10.1007/bF00683246
[7] K.P. Sinha and S.l. Kakani, first ed.,’Magnetic Superconductors: Recent Developments’, 

Nova Science Publishers, New York, (1989).
[8] S.l. Kakani and S. Kakani, ‘Superconductivity’, second ed. New Age International, New 

Delhi, (2012).
[9] K.N. Srivastava and K. P. Sinha, Phys. Reports 115, 93, (1984).
 http://dx.doi.org/10.1016/0370-1573(84)90122-4
[10] N. Karchev, ar XIV Cond – mat / 0405371 V2 15, (2004).
[11] K. Machida and T. Ohmi, Phys. Rev. lett. 86, 850, (2001). 
 http://dx.doi.org/10.1103/PhysRevlett.86.850
[12] h. Shimahara and M. Kohmoto, Europhys. lett. 57, 247, (2002). 
 http://dx.doi.org/10.1209/epl/i2002-00568-7
[13] S. watanable and K. Miyake, J. Phys. Soc. Jpn. 71, 2489, (2002). 
 http://dx.doi.org/10.1143/JPSJ.71.2489
[14] K.G. Sandeman, G. lonzarich and A. Schofield, Phys. Rev. lett. 90, 167005, (2003).
 http://dx.doi.org/10.1103/PhysRevlett.90.167005
[15] T.R. Kirkpatrick, D. belitz, T. Vojta and R. Narayanan, Phys. Rev. lett. 87, 1270003, 

(2001). http://dx.doi.org/10.1103/PhysRevlett.87.127003
[16] T.R. Kirkpatrick and D. belitz, Phys. Rev. B 67, 024515, (2003).
 http://dx.doi.org/10.1103/PhysRevb.67.024419;
[17] V.P. Mineev and T. Champel, Phys. Rev. B 69, 144521, (2004).
 http://dx.doi.org/10.1103/PhysRevb.69.144429 

[18] h. Kaneyasu and K. Yamada, ar Xiv : Cond – Mat / 0603066 V 13 Mar. 2006.
[19] h. Suhl, Phys. Rev. lett. 87, 167007, (2001).
 http://dx.doi.org/10.1103/PhysRevlett.87.167007



Kakani, S.
Nuwal, A.
Kakani, S.l.

70

[20] A. A. Abrikosov, J. Phys. : Condens. Matter 13, l 943, (2001).

[21] K.V. Samokhin and M.b. walker, Phys. Rev. B 66, 174501, (2002). 

 http://dx.doi.org/10.1103/PhysRevb.66.024512 

[22] D.I. uzunov, Cond – mat / 0611431 1, 16, (2006).

[23] D.I. uzunov, Phys. Rev. b 74, 134514, (2006). http://dx.doi.org/10.1103/PhysRevb.74.134514

[24] Y. Zhou and C.D. Gong, Europhys. lett. 74 (1) 145, (2006). 

 http://dx.doi.org/10.1209/epl/i2005-10495-1

[25] b.J. Powell, J.F. Annett and b.l. Gyorffy, J. Phys. : Condens. Matter 15 L (2003) 235; J 
Phys. A : Math. Gen. 36, 9289, (2003). http://dx.doi.org/10.1088/0305-4470/36/35/314

[26] K.b. blagoev, J. R. Engelbrecht, and K.S. bedell, Philos. Mag. lett. 78 (1998) 169; Phys. 
Rev. lett. 82, 133, (1999). http://dx.doi.org/10.1080/095008398178165

[27] D. Fay and J. Appel, Phys. Rev. b 22, 3173, (1980). 

 http://dx.doi.org/10.1103/PhysRevb.22.3173

[28] S. Kakani, K.C. Pancholi and S.l. Kakani, J. Supercond. Nov. Magn.: DOI 10.1007/s 
10948-010-0927-1 (2010).

[29] S. Kakani, K.C. Pancholi and S.l. Kakani, J. Supercond. Nov. Magn.: DOI 10.1007/s 
10948-009-0521-6(2009); 23, 237 (2010).

[30] A.M. Clogston, Phys. Rev. lett. 9, 266, (1962). 

 http://dx.doi.org/10.1103/PhysRevlett.9.266

[31] b.S. Chandrasekhar, Appl. Phys. lett. 1, 7, (1962). http://dx.doi.org/10.1063/1.1777362

[32] w. baltensperger, Physica 24, 5153, (1958). 

  http://dx.doi.org/10.1016/S0031-8914(58)80579-0

[33] Y. Onuki, I. ukon, S. w. Yun, I. umehara, K. Satoh, T. Fukuhara, h. Sato, S. Takayanagi, 
M. Shikama and A. Ochiai, J. Phys. Soc. Jpn. 61, 293, (1992).

 http://dx.doi.org/10.1143/JPSJ.61.960

[34] G. Gorski, K. Kucab and J. Mizia, Physica C 469, 1, (2009). 

 http://dx.doi.org/10.1016/j.physc.2008.09.010

[35] J. hubbard, Proc. R. Soc. (london) Sec. A 276, 238, (1963).

 http://dx.doi.org/10.1098/rspa.1963.0204

[36] S.l. Kakani and u.N. upadhyaya, Phys. Stat. Sol (a) 99, 15, (1987). 

 http://dx.doi.org/10.1002/pssa.2210990142

[37] N. Karchev, J. Phys. : Condens : Matter 15, l385, (2003).

 http://dx.doi.org/10.1088/0953-8984/15/3/306

[38] S.l. Kakani and u.N. upadhyaya, J. low Temp. Phys. 53 (1983) 221; Phys. Stat. Sol. (b) 
125 (1984) 861; Phys Stat Sol. (b) 135 (1986) 235; Phys. Stat. Sol. (a) 99 (1987) 15.

 http://dx.doi.org/10.1007/bF00685781

[39] A.M. Clogston, Phys. Rev. lett. 9, 266, (1962). http://dx.doi.org/10.1103/PhysRevlett.9.262 

[40] b.S. Chandrasekhar, Appl. Phys. lett. 1, 7, (1962). http://dx.doi.org/10.1063/1.1777362

[41] K. Maki and T. Tsuneto, Prog. Theor. Phys. 31, 954 (1964). 
 http://dx.doi.org/10.1143/PTP.31.331 



Theoretical Study 
of Interplay 

between 
Superconductivity 

and Itinerant 
Ferromagnetismy

71

[42] S.l. Kakani, C. hemrajani and M. Kakani, J. low Temp. Phys. 82, 1, (1991). 
 http://dx.doi.org/10.1007/bF00681547
[43] J. linder and A Sudbo, Phys. Rev. B76, 054511, (2007). 
 http://dx.doi.org/10.1103/PhysRevb.76.054511
[44] N.I. Karchev, Phys. Rev. B77, 012405, (2008). http://dx.doi.org/10.1103/PhysRevb.77.012405
[45] N.I. Karchev, K.b. blagoev, K.S. bedell, and P.b. littlewood, Phys. Rev. lett. 86, 846, 

(2001). http://dx.doi.org/10.1103/PhysRevlett.86.846
[46] N.C. Das, Phys. Rev. B35, 4781, (1987). http://dx.doi.org/10.1103/PhysRevA.35.4781
[47] N.T. huy, D.E. de Nijs, Y.K. huang, and A. de Visser, Phys. Rev. lett. 100, 077001, 

(2008). http://dx.doi.org/10.1103/PhysRevlett.100.077001 
[48] C. Pfleiderer and h.V. lohneysen, J. low Temp. Phys. 126, 933, (2002). 
 http://dx.doi.org/10.1023/A:1013846725405
[49] h. Nakanishi, K. Machida and T. Matsubara, Solid State Commun. 43, 899, (1982). 
 http://dx.doi.org/10.1016/0038-1098(82)90925-5
[50] X.l. lei, C.S. Ting, and J.l. birman, Phys. Rev. b. 29, 2483, (1984). 
 http://dx.doi.org/10.1103/PhysRevb.29.2483
[51] h. Matsumoto and h. umezawa, Cryogenics 23, 37, (1983). 
 http://dx.doi.org/10.1016/0011-2275(83)90138-8
[52] E.I. blount and C.M. Varma, Phys Rev. lett. 42, 1079, (1979). 
 http://dx.doi.org/10.1103/PhysRevlett.42.1079
[53] Y. Kamihara, w. watanabe and M. hirano, J. Am. Chem. Soc. 130, 3293, (2008). 
 http://dx.doi.org/10.1021/ja800073m
[54] K. Tanabe and h. hosono, Jpn. J. Appl. Phys. 51, 010005, (2012).
 http://dx.doi.org/10.1143/JJAP.51.113101
[55] A.I. buzdin and A.S. Mel’nikov, Phys. Rev. b 67, 020503, (2003). 
 http://dx.doi.org/10.1103/PhysRevb.67.184519 
[56] F. Canepa, P. Manfrinetti, M. Pani, and A. Palenzona, J. Alloys Comp. 234, 225 (1996). 

http://dx.doi.org/10.1016/0925-8388(95)02037-3
[57] b. lloret, Ph.D. thesis, university bordeanz I, (1988).
[58] A. de Visser, N.T. huy, A. Gasparini, D.E. de Nijs, D. Andreica, C. baines, and A. Amato, 

Phys. Rev. lett. 102, 167003, (2009).
 http://dx.doi.org/10.1103/PhysRevlett.102.167003
[59] N.T. huy and A. de Visser, Solid State Comm. 149, 703, (2009). 
 http://dx.doi.org/10.1016/j.ssc.2009.02.013
[60] A. Gasparini, Y. K. huang, N. T. huy, J. C. P. Klaasse, T. Naka, E. Slooten, and A. de Visser, 

J. low Temp. Phys. DOI 10. 1007/s 10909 – 010 – 0188- 1 (Online 18 June, 2010).
[61] K. Machida, Appl. Phys. A35, 193, (1984). http://dx.doi.org/10.1007/bF00617170
[62] D. Akoi, F. hardy, A. Miyake, V. Taufour, T. D. Matsuda, and J. Flouquet, arXiv : 1104. 

2279 v 1 [cond – mat. Str – el] (12 Apr. 2011).

[63] A. Dommann, F. hulliger, and T. Siegrist, J. Magn, Magn. Mat. 67 (1987) 323. 
 http://dx.doi.org/10.1016/0304-8853(87)90191-0

[64] E. Yamamoto,Y. haga, T.D. Matsuda, A. Nakamura, R. Settai, Y. Inada, h. Sugawara, h. 
Sato and Y. Onuki, J. Nucl. Sci. Technol. 3 (Suppl.) (2002) 187.


