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Abstract Level statistics oftransitional region of SU SU( ) ( )3 3↔  interacting boson 
model is described with emphasis on the nearest neighbor spacing distributions. The energy 
levels of transitional Hamiltonian are calculated via the SO(6) representation of eigenstates. 
By employing the MLE technique, the parameter of Abul-Magd distribution is estimated 
which suggests less regular dynamics for transitional region as compared to dynamical 
symmetry limits. Also, the O(6) dynamical symmetry which is known as the critical point of 
this transitional region, describes a deviation to more regular dynamics. 
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1. INTRoducTIoN

Investigation of significant changes in energy levels and electromagnetic transition rates 
resulting in the shape phase transitions [1-4] from one kind of collective behavior to 
another has received a lot of attention in recent years. The new symmetries called X(5) 
and E(5) are obtained within the framework of the collective model. These dynamical 
symmetries have employed to describe the atomic nuclei at the critical points [5-7]. 
In the interacting boson model (IBM) framework [8-11], a very simple two-parameter 
description has been used leading to a symmetry triangle describing many atomic 
nuclei. This model describes the nuclear structure of the even–even nuclei within the 
U(6) symmetry, possessing the U(5) SU(3),and O(6) dynamical symmetry limits. No 
phase transition is found between the SU(3) and O(6) vertices of the triangle. However, 
as discussed in Refs. [12-14] in the context of catastrophe theory, an analysis of the 
separatrix of the IBM-1 Hamiltonian in the coherent state formalism shows that there is 
a phase transition in between oblate SU( )3  and prolate (SU(3)) deformed nuclei. This 
phase transition and its critical point symmetry, which in fact, coincides by the O(6) limit 
has described from the standpoint of physical observables in Refs.[15-16] by Jolie et al.

On the other hand, the energy level statistics [17-19] has employed as a new observable 
to analyze the evolution of energy spectra along the two dynamical symmetry limits. 
It’s well-known [20-21], the energy spectra of nuclei correspond to any definite 
phase, governed due to the dynamical symmetry limits, exhibit more regularity. On 
the other hand, in the transitional region which contains the critical point of quantum 
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phase transition, system goes from a symmetry limit to another dynamical symmetry 
limit. Consequently, a combination of different symmetries visualizes by nuclei and 
a deviation of regular dynamics occurs in spectra.

In the present paper, we investigate the fluctuation properties of energy spectra for 
SU SU( ) ( )3 3↔  transitional region in the Nearest Neighbor Spacing Distribution 
(NNSD) statistics framework. To determine the energy spectra of considered region, 
the SO(6) representation of eigenstates [22-23] are generalized for systems with total 
boson number N = 3 4,  and the energy eigenvalues determined by parameter-free 
techniques. By using these energy spectra, sequences are constructed by unfolding 
procedure and then, by employing the Maximum Likelihood Estimation (MLE) 
technique, the parameter of Abul-Magd’s distribution estimated [24-25]. The ML-
based estimated values propose an apparent dependence between the chaocity of 
considered sequences and control parameter where suggest a deviation to less regular 
dynamics for transitional region in compare to both prolate and oblate dynamical 
symmetry limits. Also, the energy spectra which generated by x = 0 and describe 
the O(6) dynamical symmetry limits, i.e. the critical point of this transitional region, 
suggest more regular dynamics as compare to other systems (with different X values) 
in transitional region.

This paper is organized as follows: Section 2 briefly summarizes the theoretical 
aspects of considered Hamiltonian and SO(6) representations of eigenstates. In 
Section 3, details about statistical investigation are presented which includes 
unfolding procedure and MLE technique which applied to Abul-Magd distribution. 
Numerical results are presented in Section 4. Section 5 is devoted to summarize the 
results which have obtained in the present work.

2. THeoReTIcAL FRAMewoRK

The phase transition have been studied widely in Refs. [14-16], are those of the ground 
state deformation. In the Interacting Boson Model (IBM), one would achieve a very 
simple two parameters description leading to a symmetry triangle which is known 
as extended Casten triangle [11]. There are four dynamical symmetries of the IBM 
called U(5), SU(3), SU( )3  and O(6) limits. They correspond to vibrational nuclei with 
a spherical form, namely U(5), an axially symmetric prolate rotor with a minimum 
in the energy at γ = 0 which corresponds to SU(3) and an axially symmetric oblate 
rotor with a minimum at γ = °60 , namely SU( )3 . The fourth symmetry is located in the 
middle of the SU SU( ) ( )3 3↔  transitional region and corresponds to a rotor with a flat 
potential in γ−, it means O(6) limit, as have presented in Figure 1. On the other hand, 
in the Bohr-Mottelson Collective model framework, Bonatsos et al. [26], introduced 
the Z(5) critical point symmetry for the prolate to oblate shape phase transition. It’s 
known, many predictions of this model involving large rigid triaxiality are very close 
to the predictions of γ−– soft models involving γ−– fluctuation such that γrigid  of 
the former equals of the latter.  Also, the equivalence between γ−– instability and 
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rigid triaxiality with γ = °30  has been shown in relation to the O(6) limit of IBM.  
To consider the transition region, it is parameterized using the simple Hamiltonian 
[14-15] 

 ˆ ( , , ) ˆ . ˆH N n
N

Q Qdη χ η
η

χ χ= +
−



1
, (1)

Where 


n d dd =
†.  is the d-boson number operator and 



 Q s d d s d dχ χ= + + ×( ) ( )( ) ( )2 2  
represents the quadrupole operator and N n ns d( )= +  stands for the total number 

of bosons. The η  and x regard as control parameters while vary within the range 

η ∈ [ , ]0 1  and χ∈ − +[ , ]7 2 7 2 . Our considered region, namely the prolate-

oblate transitional region, passing through the O(6) dynamical symmetry limit, is 
known to be situated close to the upper right leg of the extended Casten triangle with 

η = 0. The considered Hamiltonian, η
η

χ χ


n
N

Q Qd +
−1 ˆ . ˆ , describes the intrinsic part 

of transitional region. Leviatan et al. in Refs. [27],  have explored extensively, the  

phase transitions between different dynamical symmetry limits, have affected by 
only this part of Hamiltonian. On the other hand, one can add the collective part, 
i.e. E CL0

2+ , to consider this transitional region with more terms. In Section 4, we 
describe the fluctuation properties of both spectra generated by only intrinsic part and 
also the complete Hamiltonian, but any significant difference doesn’t appear between 
them. In the following, we have employed the SO(6) representation to determine the 
eigenvalues of Hamiltonian (1). The Algebraic structure of IBM has been described 
in detail in Refs. [22-23]. Here, we briefly outline the basic ansatz and summarize the 
results. The classification of states in the IBM SO(6) limit is [27-29]

Figure 1. The extend Casten triangle [14], represents different dynamical 
symmetries of IBM as open circles.
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U( )6   SO(6)   SO(5)   SO(3)   SO(2)
                 

⊃ ⊃ ⊃ ⊃
↓ ↓                                         ,

          
↓ ↓ ↓

[ ]N Σ              ( )               L               Mτ

 (2)

The multiplicity label vΔ  in the SO SO( ) ( )5 3⊃  reduction will be omitted in the 
following when it is not needed. The eigenstates [ ] ( )N LMσ τ νΔ  are obtained via a 
Hamiltonian with the SO(6) dynamical symmetry. The construction of our considered 
representation requires n-boson creation and annihilation operators with definite tensor 
character in the basis (2) as;

 B B BN lm n lm

l m
N l m[ ] ( ) [ ] ( ) [ ] ( ) ,, ( ) ( ) ,σ τ σ τ σ τ



5 1≡ − −
−

 (3)

Of particular interest are tensor operators with σ< n. They have the property

 B N N v LM
n lm[ ] ( )

[ ] ( ) ,5 0
σ τ

τ σΔ = < n (4)

for all possible values of τ and L contained in the SO(6) irrep N . This is so because 
the action of B

n lm[ ] ( )5 σ τ
 leads to an (N – n) – boson state which contains the SO(6)

irrep ∑ = − − =N n i i2 0 1, , ,...., which cannot be coupled with σ  to yield, since

σ< n. Number conserving normal ordered interactions that are constructed out of such 
tensors with σ< n (and their Hermitian conjugates) thus have [ ] ( )N LMσ τ νΔ  as 
eigenstates with zero eigenvalues. A systematic enumeration of all interactions with 
this property is a simple matter of SO(6) coupling. For one body operators,

 B B m m m[ ] ( ) [ ] ( ), ,1 1 0 00 0 1 1 1 2 2= ≡ = ≡s b d b  (5)

On the other hand, coupled two body operators are of the form 

 B C b blm l k l k

l

kk
k k m

l

k k
k k

[ ] ( ) ( ) , ( )

( ) ( )

’
’

’
’

’( )2 σ τ τ τ

σ τ

τ τ

∝ ∑∑ ,  (6)

Where ( )( )
’b bk k m

1  represent coupling to angular momentum (l) and the C coefficients 

are known SO SO SO( ) ( ) ( )6 5 3⊃ ⊃  isoscalar factors [30]. These processes lead to the 
normalized two-boson SO(6) representation displayed in Tables (1-2) for systems with 
total boson number N = 0 and 4, respectively.

Now, with using these eigenstates, one can determine energy spectra for considered 
systems as

 [ ] ( ) [ ] ( )N LM H N LM n Ndσ τ ν σ τ ν η η εΔ Δ = + −1  , (7)

Where ε denote the matrix elements of quadrupole term in Hamiltonian as presented 
in Tables (3-4) for systems with, N = 3, 4, respectively. 
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The Eq. (7) describes the intrinsic part of energy spectra for transitional Hamiltonian  
and if we add ε0

1+ +CL L( )  terms to it, we can explain the complete spectra for this 
region. Now, we are proceeding to determine the energy spectra by parameter free method, 
i.e. up to over all scale factors while we have considered all levels in our sequences.

3. THe MeTHod oF STATISTIcAL ANALySIS

The fluctuation properties of nuclear spectra have been considered by different 
statistics such as Nearest Neighbor Spacing Distribution (NNSD) [17], the Dyson-
Mehta Δ

3
 statistic and the linear correlation coefficient between adjacent spacing [31-

32]. To perform a statistical analysis for the NNS distribution of spherical nuclei in 
different mass regions, similar to every statistical analysis which using random matrix 
theory (RMT) [17-20], we must have a sequences of unit mean level spacing. This 
requirement is done by fitting a theoretical expression to the number N(E) of level 
below the excitation energy E which is regard as unfolding procedure. The expression 
used here is the constant-temperature formula [17-18]

 N E N E N Eav fluct( ) ( ) ( )= +  , 

Then we fix the N
a
(E

i
) semiclasically by taking a smooth polynomial function of 

degree 6 to fit the staircase function N(E). We obtain finally, the unfolded spectrum 
with the mapping

Table 1: The SO(6) representation of eigenstates for systems with total 
boson number N n n

s d
( )= + = 3

n
d

s t l Representation

3 3 3 6 1
6

4 6[( ) ]d d d
m

† † †× ×

3 3 3 4 7
22

2 4[( ) ]d d d
m

† † †× ×

3 3 3 3 7
30

2 3[( ) ]d d d
m

† † †× ×

3 1 1 2 5
14

0 2[( ) ]d d d
m

† † †× ×

3 3 3 0 1
6

2

0

0[( ) ]d d d† † †× ×

2 3 2 4 1
2

4 4[( ) ]d d S
m

† † †× ×

2 3 2 2 1
2

2 2[( ) ]d d S
m

† † †× ×

2 1 0 0 1
2

0

0

0[( ) ]d d S† † †× ×

1 3 1 2 1
2

2 2[( ) ]d S S
m

† † †× ×

0 3 0 0 1
6

0

0

0[( ) ]S S S† † †× ×
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 { } ( )E N Ei i= ,  

This unfolded level sequence { }Ei  is obviously dimensionless and has a constant 
average spacing of 1, but the actual spacing exhibit frequently strong fluctuation. 
The nearest neighbor level spacing is defined as s E Ei i i= −+( ) ( ) 

1 . The distribution 
P(s) will be in such a way in which P(s) is the probability for the s

i
 to lie within the 

infinitesimal interval [s, s + ds]. For nuclear systems with time reversal symmetry, 
spectral spacing follows Gaussian Orthogonal Ensemble (GOE) statistics and 
therefore, the NNS probability distribution function is well approximated by Wigner 
distribution [17]

 P s se
s

( )=
−1

2

2

4π
π

 
,  (3)

Table 2: The SO(6) representation of eigenstates for systems with total 
boson number N n n

s d
( )= + = 3.

n
d
σ τ l Representation n

d
σ τ l Representation

4 4 4 8 1
24

4 4 8[( ) ( ) ] ,d d d d
m

† † † †× × × 4 4 4 6 7
60

4 2 6[( ) ( ) ]d d d d
m

† † † †× × ×

4 4 4 5 1
12

4 2 5[( ) ( ) ] ,d d d d
m

† † † †× × × 4 4 4 4 49
664

2 2 4[( ) ( ) ]d d d d
m

† † † †× × ×

4 2 2 4 5
36

0 4 4[( ) ( ) ] ,d d d d
m

† † † †× × × 4 2 2 2 5
36

0 2 2[( ) ( ) ]d d d d
m

† † † †× × ×

4 0 0 0 5
56

0 0

0

0[( ) ( ) ] ,d d d d† † † †× × ×
 

4 4 4 2 5
48

2

0

0 2[( ) ) ]d d d d
m

† † † †× × ×

3 4 3 6 1
6

4 2 6[( ) ( ) ] ,d d d S
m

† † † †× × × 3 4 3 4 7
22

2 2 4[( ) ( ) ]d d d S
m

† † † †× × ×

3 4 3 3 7
30

2 2 3[( ) ( ) ]d d d S
m

† † † †× × × 3 2 1 2 5
14

0 2 2[( ) ( ) ]d d d S
m

† † † †× × ×

3 4 3 0 1
6

2

0

0

0

0[( ) ) )] ,d d d S† † † †× × × 2 4 2 4 1
4

4 0 4[( ) ( ) ]d d S S
m

† † † †× × ×

2 4 2 2 1
4

2 0 2[( ) ( ) ] ,d d S S
m

† † † †× × × 2 2 0 0 1
4

0 2

0

0[( ) ( ) ]d d S S† † † †× × ×

1 4 1 2 1
6

2 0 2[( ) ( ) ] ,d S S S
m

† † † †× × × 0 4 0 0 1
24

0 0

0

0[( ) ( ) ]S S S S† † † †× × ×
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Table 4. The elements of quadrupole operator in Hamiltonian (1) for 
systems with N = 4 which determined by states introduced in Table 3. 

L ε

0 31360
480454

7

272538

7

69120

49
2 4 6+ +x x x

2 402
2056

7

3108

7

3971

49

316

343

471

2401
2 4 6 8 10+ + + + +x x x x x

3 14
18

7
2+ x

4 275
1902

7

167

7

1059

49

605

343
2 4 6 8+ + + +x x x x

5 4
24

7
2+ x

6 56
290

7

1221

49
2 4+ +x x

8 4
52

7
2+ x

Table 3. The elements of quadrupole operator in Hamiltonian (1) for 
systems with N = 3 which determined by states introduced in Table 2. 

L ε

0 315 360
720

7
2 4+ +x x

2 187
7113

7

5373

49

473

343
2 4 6+ + +x x x

3 3
18

7
2+ x

4 33 8
396

49
2 4− +x x

6 3
33

7
2+ x
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This distribution exhibits the chaotic properties of considered spectra. On the other 
hand, the spectral statistics of regular systems in the NNSD framework is generically 
represented by Poisson distribution
 P s e s( )= − , (4)

Different investigations have been accomplished on nuclear system’s spectra, proposed 
intermediate situation of spectral statistics between these limits. To compare the spectral 
statistics with regular and chaotic limits quantitatively, different distribution functions 
have been proposed [33-34]. One of popular distribution is Abul-Magd distribution 
[24] which is derived by assuming that, the energy level spectrum is a product of 
the superposition of independent subspectra, which are contributed respectively from 
localized eigenfunctions onto invariant (disjoint) phase space. This distribution is based 
on the Rosenzweig and Porter random matrix model. The exact form of this model is 
complicated and its simpler form is proposed by Abul-Magd et al in Ref.[24] as:

 P s q q q q
s

q s q q
s

( , ) [ ( . . ) ] exp( ( ) ( . . ) )= − + + × − − − +1 0 7 0 3
2

1 0 7 0 3
4

2π π
, (5)

This distribution describes both Poisson and Wigner distributions by q = 0 & 1, 
respectively. The “q” values describe the statistical situation of considered systems 
in related to both limits which closer approach to q → 1(orq→ 0) suggest chaotic 
(or regular) dynamics. In common considerations, one can handle a least square fit 
(LSF) of Abul-Magd distribution to sequence while this estimation technique has 
some unusual uncertainty and also exhibits more deviation to chaotic dynamics. 
Consequently, it is almost impossible to carry out any reliable statistical analysis 
in some sequences. Recently [25], we have employed the Maximum Likelihood 
Estimation (MLE) technique to estimate every distribution’s parameter which provides 
more precisions with low uncertainties, i.e. estimated values yield accuracies which 
are closer to Cramer-Rao Lowe Bound (CRLB) [25]. Also, this technique yields results 
which are almost exact in all sequences, even in cases with small sample sizes where 
other estimation methods wouldn’t achieve the appropriate results. Consequently, we 
analyzed the spectral statistics of considered systems with about 10 or more samples in 
each sequence with more precision. The MLE estimation procedure has been described 
in detail in Ref [25]. Here, we outline the basic ansatz and summarize the results. 

3.1. The Maximum Likelihood (ML)-based results for Abul-Magd distribution

The MLE method provides an opportunity for estimating exact result with minimum 
variation. In order to estimate the parameter of distribution, Likelihood function is 
considered as product of all P(s) functions, 

 L q P s q q q
s

ei
i

q s q q
s

i
i

( ) ( ) [ ( . . ) ]
( ) ( . . )

= = − + +
− − − +

1 0 7 0 3
2

1 0 7 0 3
2

π π

 44

11

,  
i

n

i

n

==
∏∏  (6)

With taking the derivative of the log of likelihood function (6) respect to its parameter, 
q, and set it to zero, (see Appendix (C) of Ref. [25] for more details), we get the desired 
estimator for this quantity
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 f q
q

s

q q q
s

s q

i

i
i( )

( . . )

[ ( . . ) ]
( . . )=

− + +

− + +
+ + +∑

1 0 7 0 6
2

1 0 7 0 3
2

0 7 0 6

π

π
ππsi

2

4∑ ,  (7)

Now, we can estimate ”q” by high accuracy via solving the above equation by Newton-
Raphson method
 q q

f q

f qnew old
old

old

= −
’( )

( )
 

which is terminated to the following result
 
q

q

q
s

q q q
s

new

old

old

i

old old old

i

=

−

− + +

− + +

1 0 7 0 6
2

1 0 7 0 3

( . . )

[ ( . . )

π

π

22

0 7 0 6
4

0 3 1 0 7 0 3

2

]

( . . )

[ . ][ ( . .

∑ ∑+ − +

− + +

s q
s

s q q

i old

i

i old old

π

π

   

qq
s

q
s

q q q

old

i

old

i

old old ol

) ] [ ( . . ) ]

[ ( . .

π π

2
1 0 7 0 6

2

1 0 7 0 3

2− − + +

− + +
dd

i

is
s

) ]

.
π

π

2

0 15
2

2∑ ∑−

,

 

Also we have used the difference of both sides of equation (8) to obtain the decreasing 
of uncertainty for estimated values, namely the CRLB for Abul-Magd distribution is 
defined as [25] 

 Var q
MF q

( )
( )

≥
1

 

Where M represents the number of samples and F(q) is used to describe the Fisher 
information.

4. NuMeRIcAL ReSuLTS

In the present study, we consider the statistical properties of SU SU( ) ( )3 3↔  transitional 
region. x is considered as control parameters in our description and different values of 

this quantity, exhibit systems in dynamical symmetry limits, i.e. χ= + −0 7 2 7 2, ,  

for O(6) ,SU(3) and SU( )3 , respectively. On the other hand, the variation of x between 

these limits, describe the transitional region. Consequently, we have considered the 

χ∈ − +[ , ]7 2 7 2  region with step length x = 0.1 to describe SU SU( ) ( )3 3↔  

transitional region, although we have examined the same analysis with x = 0.01 which 
any significant change didn’t appear in results. 

To analyze the spectral statistics of transitional region which was described by 
different values of x, we have used both eigenvalues obtained by Eq. (7) which 
describe the intrinsic part and those of general Hamiltonian which explained by 
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ε η η ε0
1 1+ + − + +n N CL Ld  ( ). All 0+ to 8+ levels are established for systems with 

total boson number N = 3 and 4 in the energy region below ≤ 4 Mev with arbitrary 
value for η. These levels are measured from the ground state 0+

1
 Also, these levels are 

normalized to the first excited state and as can be found from Eq. (7), are parameter 
free. In this approach we achieved 10 levels for systems with N = 3 and 18 levels for 
systems with  N = 4 while have used to construct sequences by unfolding processes. With 
employing the MLE technique, the parameter of Abul-Magd distribution estimated by 
converging value of iteration Eq. (8) where as an initial value we have chosen the value 
of parameter obtained by LSF method.

Since the investigation of the majority of short sequences yields an overestimation 
about the degree of chaoticity measured by the “q” ( Abul-Magd distribution’s 
parameter), therefore, we wouldn’t concentrate only on the implicit value of “q” and 
examine a comparison between the amounts of “q” for different x values. It means, 
the smallest values of “q” explain more regular dynamics and vice versa. 

The ML-based estimated “q” values are listed in Table 5, while the variations of this 
quantity for considered systems are presented in Figures 2 and 3 for intrinsic and general 
Hamiltonian, respectively. The matrix elements of quadrupole operator in transitional 
Hamiltonian (1) and consequently, the energy spectra of considered systems, i.e. Eq. 
(7), are symmetric with respect to the control parameter “x” (where only even powers 
of x appeared in them). It’s mean, systems which are described by similar values but 
different signs of x, have same spectra and therefore, one can expect the similar spectral 
statistics for them. The symmetric variations of chaocity degrees, namely “q” values, for 
considered systems with respect to x are in agreement with this property of spectra.

The “q” values suggest a deviation to less regularity for transitional region in compare 
to both oblate and prolate dynamical symmetry limits. Also, x = 0 which characterizes 

the O(6) dynamical symmetry limits explores more regularity in compare to χ=+ 7 2 

and − 7 2 which correspond to oblate and prolate limits, respectively. The apparent 

regularities of the spectrum in the dynamical symmetry limits, namely O(6), SU(3) and 
SU(3) are governed by the approximate conservations of the quantum number describe 
the collective degrees of freedom. Our results may be interpreted that the coupling 
between the single particle and collective degrees of freedom is weaker in oblate limit 
than prolate one. Also, this result proposes similar spectral statistics as the prediction 

of Abul-Magd et al in Refs. [35] where propose systems provide evidences for SU(3) 

(or SU( )3 ) by χ=+ 7 2 (or χ=+ 7 2 which have rotational spectra, explore less 

regular dynamics in compare to O(6)dynamical symmetry limit (by x = 0 ) which has 
vibrational spectra, too. It means, nuclei which are spherical (magic or semi magic) 
ones, are expected to have shell model spectra and consequently, these results confirm 
the prediction of GOE [36], i.e. the identity of nucleons make impossible to define the 
rotation for spherical nuclei and the rotation of nuclei contribute to the suppression 
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Table 5. The ML-based estimated “q” values (Abul-Magd distribution 
parameter) for systems with different x and N values. 

x
N = 3 N = 3

q (for general 
Hamiltonian)

q (for intrinsic 
part)

q (for general 
Hamiltonian)

q (for intrinsic 
part)

-1.3 0.63 ± 0.09 0.59 ± 0.05 0.57 ± 0.08 0.55 ± 0.08

-1.2 0.70 ± 0.04 0.66 ± 0.06 0.65 ± 0.06 0.61 ± 0.05

-1.1 0.69 ± 0.08 0.64 ± 0.09 0.69 ± 0.14 0.63 ± 0.11

-1.0 0.68 ± 0.07 0.62 ± 0.02 0.66 ± 0.09 0.60 ± 0.14

-0.9 0.67 ± 0.08 0.60 ± 0.10 0.63 ± 0.11 0.57 ± 0.09

-0.8 0.70 ± 0.05 0.62 ± 0.08 0.66 ± 0.04 0.59 ± 0.10

-0.7 0.74 ± 0.03 0.63 ± 0.03 0.69 ± 0.10 0.62 ± 0.05

-0.6 0.77 ± 0.12 0.64 ± 0.07 0.70 ± 0.08 0.63 ± 0.07

-0.5 0.73 ± 0.09 0.62 ± 0.08 0.72 ± 0.08 0.64 ± 0.02

-0.4 0.70 ± 0.06 0.61 ± 0.10 0.67 ± 0.13 0.61 ± 0.10

-0.3 0.68 ± 0.07 0.60 ± 0.04 0.63 ± 0.10 0.56 ± 0.09

-0.2 0.71 ± 0.11 0.61 ± 0.09 0.65 ± 0.08 0.60 ± 0.06

-0.1 0.66 ± 0.07 0.59 ± 0.03 0.59 ± 0.07 0.51 ± 0.03

0 0.53 ± 0.05 0.51 ± 0.07 0.52 ± 0.08 0.46 ± 0.08

 0.1 0.66 ± 0.07 0.59 ± 0.03 0.59 ± 0.07 0.51 ± 0.03 

 0.2 0.71 ± 0.11 0.61 ± 0.09 0.65 ± 0.08 0.60 ± 0.06

0.3 0.68 ± 0.07 0.60 ± 0.04 0.63 ± 0.10 0.56 ± 0.09

0.4 0.70 ± 0.06 0.61 ± 0.10 0.67 ± 0.13 0.61 ± 0.10

 0.5 0.73 ± 0.09 0.62 ± 0.08 0.72 ± 0.08 0.64 ± 0.02

 0.6 0.77 ± 0.12 0.64 ± 0.07 0.70 ± 0.08 0.63 ± 0.07

 0.7 0.74 ± 0.03 0.63 ± 0.03 0.69 ± 0.10 0.62 ± 0.05

 0.8 0.70 ± 0.05 0.62 ± 0.08 0.66 ± 0.04 0.59 ± 0.10

 0.9 0.67 ± 0.08 0.60 ± 0.10 0.63 ± 0.11 0.57 ± 0.09

 1.0 0.68 ± 0.07 0.62 ± 0.02 0.66 ± 0.09 0.60 ± 0.14

 1.1 0.69 ± 0.08 0.64 ± 0.09 0.69 ± 0.14 0.63 ± 0.11

 1.2 0.70 ± 0.04 0.66 ± 0.06 0.65 ± 0.06 0.61 ± 0.05

 1.3 0.63 ± 0.09 0.59 ± 0.05 0.57 ± 0.08 0.55 ± 0.08

of their chaotic dynamics. On the other hand, Leviatan et al [37-39] considered the 
intrinsic part of Hamiltonian to determine the shape of nuclei and described the shape 
phase transition between different dynamical symmetry limits via only this part. As 
can be realized from both Figs. 2 and 3, the spectral statistics of both intrinsic and 
general Hamiltonians are similar, although, the intrinsic part of Hamiltonian explores 
the variation of chaocity degrees better then general Hamiltonian.

For systems with N = 3  and especially 4, the significant variations in the spectral statistics 
are apparent where for some special values of control parameters, i.e. χ =±0 3.  and 



Sabri, H.
Gavifekr, P. H. N.
Ranjbar, Z.
Fouladi, N.
Jafarizadeh, M. A.

190

±0.9, a deviation to more regular dynamics are proposed. One may associate these 
values of control parameters with the critical values of this transitional region, namely 
O SU( ) ( )6 3↔  (or SU( )3 ). Our results may be interpreted that the some special values 
of control parameter (x) which describe the level crossing for considered systems, 
explore a deviation to regular dynamics due to the partial dynamical symmetries 
in these transitional regions [37]. Also, χ = 0 which describe the O(6) dynamical 
symmetry limit and is known as Z (5) critical point of this transitional region [26,40]. 
This dynamical symmetry exhibits more regularity than the predictions for SU(3) (or 
SU( )3 ) dynamical symmetry limit. These results are similar to results which we have 
suggested in Ref. [25] by employing sequences prepared by nuclei which provide 
empirical evidences for these dynamical symmetry limits.

Figure 2(black online). The variation of chaocity degrees (Abul-Magd 
distribution’s parameter) for eigenvalues of considered systems calculated 
via intrinsic part of Hamiltonian versus control parameter(x).

Figure 3(black online). The variation of chaocity degrees (Abul-Magd 
distribution’s parameter) for eigenvalues of considered systems calculated 
via general Hamiltonian versus control parameter (x).
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5. SuMMARy ANd coNcLuSIoN 

In this paper, the spectral statistics of SU SU( ) ( )3 3↔  transitional region was 
described in NNSD statistics framework. In the parameter free approach, energy 
spectra have determined by using the SO(6) representation of eigenstates for systems 
with total boson number N = 3  and 4. By employing the MLE technique to estimate 
with more accuracy, the parameter of Abul-Magd’s distribution was estimated where 
proposed a deviation to less regularity for transitional region between dynamical 
symmetry limits, namely O SU( ) ( )6 3↔ (or SU( )3 ). These results offer a less regular 
dynamics for transitional region which may be considered due to the symmetry broken 
or a combination of different symmetries in this regions. Also, some deviations to 
regularity may caused by partial dynamical symmetries in these regions while x = 0 
which describe O = (6) dynamical symmetry limits, i.e. Z = (5) critical point, explore 
more regular dynamics. Works in these directions are in progress.
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