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In medicine, the acquisition process in Computed Tomography Images (CT) is obtained by a 
reconstruction algorithm. The classical method for image reconstruction is the Filtered Back 
Projection (FBP). This method is fast and simple but does not use any statistical information about the 
measurements. The appearance of artifacts and its low spatial resolution in reconstructed images must 
be considered. Furthermore, the FBP requires of optimal conditions of the projections and complete sets 
of data. In this paper a methodology to accelerate acquisition process for CT based on the Maximum 
Likelihood Estimation Method (MLEM) algorithm is presented. This statistical iterative reconstruction 
algorithm uses a GPU Programming Paradigms and was compared with sequential algorithms in which 
the reconstruction time was reduced by up to 3 orders of magnitude while preserving image quality. 
Furthermore, they showed a good performance when compared with reconstruction methods provided 
by commercial software. The system, which would consist exclusively of a commercial laptop and GPU 
could be used as a fast, portable, simple and cheap image reconstruction platform in the future.
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1 Introduction
X-ray (XR) Computed Tomography (CT) is a nondestructive 
technique in which an XR source rotates around an object 
of interest generating axial slices of its internal structure. 
CT is nowadays an indispensable tool in medicine for the 
diagnosis of multiple diseases [1]. Since its introduction in 
1970 there are around 30,000 CT-scanners in the world and 
the number continues to rise exponentially. Currently, the 
country with the highest number of CT-scanners is Japan 
with 107,2 per million inhabitants [2] while in the United 
States of America 253.80 scans per 1000 inhabitants are 
completed per year [2]. Even if CT techniques represent the 
major development to the field of X rays in the last 50 years, 
there is still room for improvement. The major lines of work 
to achieve such objectives would be: 1. Reduction of patient 
exposure, 2. Reduction of acquisition and processing times 
3. Development of new techniques with new functionality 
and 4. Cost reduction [3]. Some of the solutions to these 
points have been: higher performance hardware which will 
allow for lower costs as well as lower dose delivery to patients 
all without compromising diagnostic effectiveness. The use 
of statistical iterative methods for image reconstruction 
reducing processing times. The development of Portable CT-
scanners, with capacities lower than standard CT-scanners 

[4] we examined the use of a portable head CT scanner 
(CereTom but cheaper and useful if the patient cannot 
be diagnosed in a radiology department. In clinical and 
emergency room environments, the speed of acquisition and 
information processing are crucial and trump in relevance 
the other developments presented here.

The method used by actual CT-scanners for image 
reconstruction is the Filtered Back Projection (FBP) one 
[5], [6], which is mathematically based on the Radon 
Transform (RT) [7], [8]. In it, the image of a given object 
is reconstructed from a set of XR back-projections of the 
aforementioned object [9]. There are many computational 
algorithms that can be used to solve the RT. Traditionally 
they are classified into either: Analytical Reconstruction 
methods or Iterative Reconstruction methods. For 
different reviews on  reconstruction methods readers 
can consult [3], [10], [11]. For the first group, the FBP 
algorithm has been the golden standard to date [12]. 
Nevertheless, recent works on statistical based methods for 
tomographic image reconstruction, specifically Maximum 
Likelihood Expectation Maximization (MLEM) [13], have 
seen a large increase in use lately. In the FBP approach, 
the reconstruction of an image is achieved using the RT 
in conjunction with an algorithm based on the central 
slice theorem [14]. In general lines, it is a simple and fast 
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reconstruction algorithm with low computational cost. 
In contrast, the appearance of artifacts and its low spatial 
resolution in reconstructed images must be considered. 
Furthermore, the FBP requires of optimal conditions of the 
projections and complete sets of data. That is, it requires 
an (almost) infinite number of projections without noise 
so that the solution of the reconstruction is perfect. This 
is far from real life situations in which only a finite set 
of projections will be available. Therefore, “approximate” 
reconstruction methods must be developed, and this is 
the main advantage of iterative algorithms. In general, 
they are less sensitive to incomplete sets of data and the 
artifacts that arise in the reconstruction process can be 
reduced or even eliminated [12], [15]. This translates into 
a better quality of reconstructed images. For a review on 
reconstruction methods see [16]. The main limitation 
that these techniques present with respect to analytical 
reconstruction methods, is their high computational 
costs. One way to deal with this limitation is parallelizing 
(dividing in parts) image reconstruction.  To this end and 
taking advantage of the fact that image reconstruction 
problems have a high degree of data parallelism and a large 
number of independent arithmetic calculations; Graphic 
Processing Unit (GPU) with the parallel programming 
model of Compute Unified Device Architecture (CUDA)
[17]–[19] can be used to speed up image computational 
times.

In 2007, the NVIDIA corporation launched CUDA, 
which is hardware architecture, used to work with its own 
GPU´s. This architecture was formed by execution units, 
called Streaming Multiprocessors (SM), which at the same 
time were formed by computing cores called Streaming 
Processors (SP), or CUDA cores. It is them which executed 
instructions (i.e. mathematical operations or data addressing 
and transfer in memory). The hardware structure of these 
graphical cards used at the same time the central processing 
unit (CPU) and the GPU. The sequential part of applications 
was executed in the CPU (Host) and the computationally 
intensive part was accelerated by use of the GPU (Device) 
in parallel. This technology allowed researchers working 
in highly specific programming languages for graphics 
such as OpenGL [20] to work in more standard high-
level programming environment such as C/C++ [21]. It 
also facilitated the writing of applications to the GPU and 
incorporated specialized libraries among which are signal 
management, image and sound, linear algebra (cuBLAS), 
etc.  

Since its introduction, CUDA has been widely 
implemented and used in research in fields as different 
as: Bioinformatics, Computational Chemistry, Imaging 
and Computer Vision, Weather and Climate, Numerical 
Analytics, etc. [22]. Che et al. [23] presented a review on 

the general-purpose applications of graphics processors 
using CUDA. As it could be expected, medical image 
processing was one of the first fields in which NVIDIA 
GPU´s and CUDA were used [24], [25] mainly because 
they can dramatically accelerate parallel computing, are 
affordable and energy efficient. In the field of medical 
imaging, GPUs are in some cases crucial for enabling 
practical use of computationally demanding algorithms. 
This review presents the past and present work on GPU 
accelerated medical image processing, and is meant to 
serve as an overview and introduction to existing GPU 
implementations. The review covers GPU acceleration of 
basic image processing operations (filtering, interpolation, 
histogram estimation and distance transforms. Tatarchuk 
et al. [26] pre-operative planning, and surgical training. 
The task of visualization is no longer limited to producing 
images at interactive rates, but also includes the guided 
extraction of significant features to assist the user in the 
data exploration process. An effective visualization module 
has to perform a problem-specific abstraction of the dataset, 
leading to a more compact and hence more efficient visual 
representation. Moreover, many medical applications, 
such as surgical training simulators and pre-operative 
planning for plastic and reconstructive surgery, require 
the visualization of datasets that are dynamically modified 
or even generated by a physics-based simulation engine. 
In this paper we present a set of approaches that allow 
interactive exploration of medical datasets in real time. Our 
method combines direct volume rendering via ray-casting 
with a novel approach for isosurface extraction and re-use 
directly on graphics processing units (GPU presented a 
set of approaches that allowed interactive exploration of 
medical datasets in real time. The development of a fast 
GPU-based algorithm to reconstruct high quality images 
from under sampled and noisy projection data was also 
presented by Flores et al. [27]. Belzunce and colleagues 
presented a parallel GPU implementation of the iterative 
reconstruction algorithm MLEM 3D using CUDA. This 
was achieved for nuclear medicine data (SPECT and PET) 
and an acceleration factor of up to 85 times was achieved 
with respect to a single thread CPU implementation [28]. 
More applications on the use of GPU’s for analysis of 
medical images reconstruction can be found in a review 
from Xing et al. [29].

As mentioned before, the main disadvantage of 
MLEM algorithms is their high computational and time 
costs, a reason why FBP algorithms are still the golden 
standard in the field. Nevertheless, these algorithms 
and their applications to image reconstruction have 
the advantage that they can be parallelized. This makes 
GPU characteristics and technologies an interesting tool 
to develop new image analysis solutions. In this paper a 
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methodology to accelerate tomographic image analysis 
based on iterative algorithms (MLEM), combined with 
the use of NVIDIA GPU programmed in the CUDA 
architecture is presented. 

2 Methods
The line of work presented in this study consisted of: 
First, the MLEM algorithm implementation was solved in 
parallel using GPU with CUDA. Second, different image 
quality parameters as a function of computational time and 
number of iterations were calculated for a clinical study 
and aphantom collection using our MLEM algorithm 
implementation  and open software solutions of the MLEM 
algorithm.

2.1 The MLEM Algorithm
In a paper by Lange et al. [30], the expectation maximization 
reconstruction algorithm for emission and transmission 
tomography was derived. In contrast, here the MLEM 
algorithm was used for the development of an CT equivalent 
image reconstruction system. The different analytical steps 
followed in this algorithm are presented in Fig. 1. 

Figure 1: The MLEM Algorithm. The different processes which 
are completed to solve the MLEM algorithm are presented in this 
image. Figure 2:  Routines Forward- and Back- projection.

Table 1: Quantification of the data presented in Fig. 4.

MSE PSNR SSIM

Min Max Mean Min Max Mean Min Max Mean

Clinical study – Parallel-OpT 0 105.4 60.13 0 32.3 29.63 0.93 1 0.95

Phantom collection – Parallel-OpT 35.79 92.32 60.52 28.48 32.59 30.38 0.89 0.94 0.91

Phantom collection – TIGRE 272.66 360.92 348.88 22.56 23.77 22.72 0.87 0.93 0.92

The different processes of the MLEM algorithm could be 
expressed mathematically by the following formula:
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Here was the pixel j of the x image at the   iteration, was 
the bin i of the measured projection given by the CT 
scanner, was the system matrix whose coefficients connected 
the image values  with the projections  and described the 
probability of detecting a photon in pixel j in projection 
bin i.

The creation of system matrix  depended on the number 
of projection lines, the number of projection angles and the 

size of the  image which could be calculated in different 
ways. In this paper we have used [31]–[33] to simulate and 
generate the system matrix  computationally with MatLab. 

Data parallelization of the MLEM algorithm was 
the most important property that facilitated this process. 
Operations performed on data structures were handled 
by four kernels (Back-Projection, Forward-Projection, 
Normalization, Image Update), which distributed the 
data to threads blocks. The algorithm was developed here:  
Parallel-OpT presents the two main CUDA routines 
employed in the parallel solution of the MLEM algorithm 
in pseudocode (see Fig. 2).

The open source codes used to solve the MLEM 
algorithm were the reconstruction methods from the open 
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source Matlab library TIGRE [34]. The tomographic 
iterative GPU-based reconstruction toolbox was used here 
for comparative purposes: The ASD-POCS library which 
is based on the adaptive steepest descent projection onto 
convex subsets algorithm (see [35] for a detailed explanation 
on both algorithms). 

Figure 3: MSE, PSNR and SSIM and time as a function of the 
number of iterations and angular degree in each view, used to 
cover the 180 degrees of an image. Parameters obtained when 
reconstructing the Shepp-Logan phantom with the Parallel-OpT 
algorithm. In each graph different angles were used to acquire the 
different views that covered the whole 180 degrees used to image 
an object.

Figure 4: MSE, PSNR and SSIM image quality parameters vs. 
Slices. (a) MSE (b) PSNR (c) SSIM image parameters obtained 

after reconstruction with the Parallel-OpT and TIGRE method: 
ASD_POCS.

2.2 Hardware and Software
The parallel algorithm was developed and executed on a 
laptop with an Intel Core i7-5500U processor running at 
2.40 GHz and equipped with an NVIDIA GeForce 840M 
GPU graphics card with a global memory of 2048 MB and 
384 CUDA cores on an Ubuntu operating system.  MatLab 
R2017a and C 4.9.2 were employed for the serial part. 
CUDA C 7.5 was employed for the parallel part and Open 
Source Computer Vision library (OpenCV 3.2.0) [36] was 
used to calculate the quality measurements.

3. Results and Conclusions
A clinical study with 171 slices and aphantom collection 
with 199 slices were used in this paper [37] the National 
Cancer Institute (NCI). The CT images were pixels with a 
dynamic range of 8 bits per pixel.

An additional study was performed to verify the 
optimal number of views for image reconstruction with the 
algorithms calculated in this paper. In this analysis, image 
quality parameters as well as computational time were 
calculated as a function of number of iterations and as a 
function of number of views. As a compromise conclusion, 
it was found that using 5-degree jumps per view to cover 
whole field of view as well as 50 to 100 iterations, produced 
reliable results without extending computing time and 
obtaining high quality image parameter values. It is also 
worth mentioning that reconstructions calculated with the 
different algorithms produced very similar results, when 
considering image quality parameters, when covering the 
field of study with projections varying between 0-180 
degrees and 0-360 degrees (data not shown here). Because 
of this, the reconstructions in this work, only used a system 
matrix varying from 0 to 180 degrees.

The Fig. 4 was produced to assess that algorithms 
implement in this work, produced images similar in quality 
to those obtained from commercial systems from which they 
were derived and shows reconstructions using Parallel-GPU 
and TIGRE algorithm for a maximum of 1000 iterations.
The results were summarized in the following table:

We observe that we obtained a similar mean SSIM 
value with our implementation of the MLEM algorithm 
and the TIGRE algorithm, and with very similar maximum 
and minimum values. We also found that we obtained 
better mean of the metrics with Parallel-Opt. As we can see 
from Figure 4 y Table 1, our implementation of the MLEM 
algorithm in the reconstruction of each slice had a good 
behavior, having obtained close values in its minimum and 
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maximum of the metrics evaluated, this shows the reliability 
of Parallel-OpT.

The Fig. 5 presents computing time for Parallel-OpT 
implementation and an algorithm developed by TIGRE. 

It can be observed that differences in time between the 
Paralell-OpT and TIGRE algorithm were of the order of 3 
times faster for the parallel solution. 

Figure 5: Computing times for Parallel-OpT and TIGRE 
algorithm.

One limitation for the implementation developed 
here was the size of the system matrix of images used. Their 
size (512 × 512) made memory of the GPU insufficient to 
process images directly. Therefore, during analysis, images 
had to be divided before reconstruction. Blocks were built 
with a ratio image size/block of 16. This way there was no 
computing bottleneck when sending serially each block 
from the CPU to the GPU. This data transfer was limited 
by GPU´s bus bandwidth and its latency.

The work environment of our CUDA C system provides 
developers with a full range of tools and solutions pertaining 
to the CUDA ecosystem with a relatively small learning curve 
as it can be seen as the extension of well-known programming 
tools belonging to the C language. The advantages of using 
this approach for the reconstruction of tomographic images 
is that its implementation is very economical and easy to 
access for many people as independent researchers, small 
universities or research institutes that do not have sufficient 
funding for this purpose.
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