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Gamma-ray shielding parameter for some concretes and dosimeters having large scale applications in 
radiological protection are presented using MCNPX (version 2.4.0) at different energies. The MCNPX 
results are compared with experimental, MCNP and XCOM data, and good agreement is being noted. 
Present study indicates that MCNPX simulation method is suitable and reliable simulation tool to be 
used as an alternative method for the investigation of gamma-ray interaction. The present geometry 
can be used as standard geometry for MCNPX simulation for low- as well as high-Z materials.
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1. Introduction
Radiation is being one of the important radiations used 
in medical, agriculture, industries, consumer products, 
archaeology, and is being found in nuclear technology. 
Radiation protection is branch of science and technology, 
emphasis is given on reduction and measurement of 
radiation exposure. Various types of shielding materials are 
being invented and investigated in detail for shielding and 
dosimetric application for use in radiological protection. 
The personal dosimeters are being used for radiation dose 
measurement using various types of materials based on the 
requirements of user and application. The tissue equivalent 
materials are being used for personal dosimeter to represent 
the realistic radiation interaction similar to human body 
organs. Water exhibits adequate suitability as tissue 
equivalent for radiation interaction and being considered 
most useful in medical applications for simulation purpose. 
Shielding and dosimetric material are characterized using 
mass attenuation coefficients and it’s derived parameters 
(effective atomic number, effective electron densities, etc). 
The mass attenuation coefficient is a elementary factor for 
gamma-ray interaction parameters [1-5]. The investigations 

on mass attenuation coefficients using Monte Carlo 
simulation for shielding and dosimetric material [6-12] have 
been reported. Radiation (neutrons, photons and electrons) 
interaction with various types of material attenuation or 
energy deposition has been reported and is found to be an 
effective tool for assessment of effectiveness of shielding and 
dosimetric properties. 

MCNPX is a general purpose radiation transport code 
for simulation of interaction of radiation with materials. 
MCNPX is three-dimensional and it utilizes the nuclear 
cross section libraries and uses particle physics models [13]. 
Capability of MCNPX Monte Carlo code and comparison 
with experiment results are found by Tekin et al. [14-19] in 
the literature. The MCNPX code is developed by the Los 
Alamos National Laboratory was used for simulation of 
gamma-ray interactions. The photon intensity i. e. number 
of photons per unit volume for particular energy incident 
on a material is being transmitted, absorbed and/or back 
scattered towards source. 

The gamma-ray attenuation coefficient is the combination 
of interaction processes photoelectric absorption, Compton 
scattering and pair production. These partial interaction 
processes dependent upon photon energy and atomic number 
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(Z) of the elements of the mateiral. The XCOM program is 
for calculation X- and gamma-ray attenuation coefficients for 
compounds or mixtures in energy 1 keV–100 GeV [20]. User 
friendly windows base operating system WinXcom is new 
version of XCOM program [21].

Concretes and dosimeters are the high demanding 
materials required for nuclear and radiation science and 
technology. The concretes are the mixture of low- as well as 
high-Z elements suitable for shielding from neutron and 
photon whereas dosimeter materials are low-Z materials 
resembling the radiological characteristics of human body 
organs. The concrete is found one of most important 
shielding materials due to special quality for shielding 
application, cost-effectiveness, handling, construction 
in desired shape and size and decommissioning. The 
shielding and dosimeter materials are the key materials 
for radiological protection for any radiation or nuclear 
facility.

In order to understand the interaction of photon with 
the shielding and dosimeter materials, it is vital to determine 
the mass attenuation coefficients for characterization of 
materials. Recently gamma-ray interaction with concretes 
and dosimeters has been reported using Monte Carlo 
simulation and experiment. In the present work, we have 
calculated mass attenuation coefficients for concretes and 
dosimeters using the MCNPX code with the objective 
to test the alternate simulation method. The chemical 
compositions of these materials are taken from literature 
[22-24]. The mass attenuation coefficients for of the 
concretes and dosimeters were calculated, and results 
were compared with XCOM program, experimental data 
[22-23] and simulation results [6-7, 11-12]. The present 
investigation would be very useful for providing alternate 
simulation tool for shielding and dosimetry in the radiation 
protection. 

2. Materials and Methods
The mass attenuation coefficient (µ/ρ) values for the 
concretes and dosimeters are theoretically calculated by 

using mixture rule ( ( / ) ( / )µ ρ µ ρpolymer i
i

n

iw= ∑ ) where wi 

is the proportion by weight and (µ/ρ)i is mass attenuation 
coefficient of the ith element by using XCOM Berger 
et al. [20].  The uncertainties in µ/ρ values is about 1% 
for low-Z (1<Z<8) in Compton region (30 keV to 100 
MeV).  Below 30 keV energy, the uncertainties are as much 
as 5-10% because of correction to experiments for high-Z 
impurities and departure of Compton cross section from 
Klein-Nishina theory. Also above 100 MeV photon energy, 
uncertainties in µ/ρ values may be 5-10%. Uncertainties in 

photon energy absorption coefficient may be slightly greater 
values. The gamma sources of photon energies above 5 keV 
are being used in medical, biological, industrial, radioactive 
source transportation and other shielding applications. 
Hence uncertainty in the result may not have any impact 
for practical applications. The mass attenuation coefficient 
(µ/ρ) values for the selected materials were calculated using 
MCNPX simulation code for photon energies, 59.5, 279.1, 
511, 661.6, 662, 1173.2, 1274.5 and 1332.5  keV. The 
present results were compared with earlier investigation in 
addition to the theoretical XCOM and experimental results 
from literature.

MCNPX code is a radiation transport code used for 
modeling the radiation transport and the interaction of  
X- and gamma-ray, neutron and electrons radiation with the 
matter. It is based on the Monte Carlo method to solve the 
transport equation; furthermore, it can work on different 
modes of delivery that are capable to consider neutrons, 
electrons and photons, alone, or in pairs all three together. 
In this study, MCNPX (version 2.4.0) Monte Carlo code 
has been used for investigations on attenuation properties of 
different type of materials. MCNPX simulation parameters 
such as cell definitions, surface definitions, material definition 
and position of each tool, definitions and features of sources 
have been defined in input file according to their properties. 
The geometrical form of material samples have been defined 
as a cube with the sizes of 10 cm (height) x 10 cm (width) 
x 5 cm (thickness). The total simulation geometry is seen in  
Figure 1. The schematic view of MCNPX simulation 
setup with Pb collimator, investigated dosimeter materials 
samples, Pb shields for backscattered and unused photons 
and detection area have been presented in Figure 2 with 
defined geometries in MCNPX input file. Gamma-ray 
source, lead (Pb) (density = 11,34 g/cm3) collimators and 
shields, samples and detection area have been defined in 
cell card, surface card and data card sections of MCNPX 
input. The basic variables such as CEL, ERG, DIR, POS, 
and PAR have been defined, respectively. The geometric 
center of detection area has been considered for location of 
point source. The source has been defined as a point source 
at photon energies of 59.5, 279.1, 511, 661.6, 662, 1173.2, 
1274.5 and 1332.5 keV. To acquire absorbed dose amount 
in detection area, energy deposition mesh tally (F6) has been 
used. This type of tally in MCNPX scores energy deposition 
data in which energy deposited per unit volume from all 
particles is included. MCNPX calculations were completed 
by using Intel® Core ™ i7 CPU 2.80 GHz computer hardware. 
The error rate has been observed less than %1 in output file. 
The same simulation parameters have been applied for all 
samples. In each simulation, density of dosimeter materials 
have been defined in input file.
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Figure 1: Total simulation geometry. Figure 2: MCNPX simulation setup of total simulation geometry.

Table 1 (a): Mass attenuation coefficient concrete shielding materials using MCNPX and comparison with XCOM, Expt, Geant4 and MCNP.

Energy 
(MeV)

  Ordinary Concrete   Energy 
(MeV)

  Hematite-serpentine

MCNPX Xcom Exp. Geant4 MCNP   MCNPX Xcom Exp. Geant4 MCNP

1.5 5.04E-02 5.19E-02 7.13E-02 6.12E-02 5.15E-02   1.5 4.96E-02 5.15E-02 4.96E-02 5.05E-02 5.29E-02

2 4.19E-02 4.47E-02 5.04E-02 4.88E-02 4.44E-02   2 4.19E-02 4.46E-02 4.20E-02 4.32E-02 4.70E-02

3 3.27E-02 3.64E-02 4.30E-02 3.89E-02 3.62E-02   3 3.36E-02 3.67E-02 3.72E-02 3.81E-02 3.85E-02

4 2.73E-02 3.17E-02 3.78E-02 3.56E-02 3.15E-02   4 2.74E-02 3.24E-02 3.52E-02 3.30E-02 3.44E-02

5 2.47E-02 2.88E-02 3.39E-02 2.68E-02 2.86E-02   5 2.44E-02 2.97E-02 3.20E-02 3.11E-02 3.04E-02

6 2.17E-02 2.68E-02 3.39E-02 3.20E-02 2.66E-02   6 2.27E-02 2.80E-02 3.28E-02 3.12E-02 2.76E-02

Energy 
(MeV)

ilmenite-limonite   Energy 
(MeV)

Basalt-magnetite

MCNPX Xcom Exp. Geant4 MCNP   MCNPX Xcom Exp. Geant4 MCNP

1.5 4.84E-02 5.05E-02 5.48E-02 5.13E-02 5.17E-02   1.5 4.97E-02 5.14E-02 4.56E-02 4.98E-02 5.27E-02

2 4.07E-02 4.37E-02 4.07E-02 4.23E-02 4.36E-02   2 4.16E-02 4.44E-02 3.61E-02 4.01E-02 4.47E-02

3 3.27E-02 3.63E-02 3.48E-02 3.54E-02 3.74E-02   3 3.37E-02 3.65E-02 3.11E-02 3.46E-02 3.80E-02

4 2.74E-02 3.23E-02 3.17E-02 3.11E-02 3.34E-02   4 2.77E-02 3.23E-02 2.69E-02 3.01E-02 3.34E-02

5 2.47E-02 2.99E-02 2.97E-02 3.01E-02 3.03E-02   5 2.44E-02 2.96E-02 2.79E-02 2.88E-02 3.06E-02

6 2.27E-02 2.84E-02 2.97E-02 3.00E-02 2.83E-02   6 2.29E-02 2.79E-02 2.52E-02 2.74E-02

Energy 
(MeV)

ilmenite   Energy 
(MeV)

Steel-scrap

MCNPX Xcom Exp. Geant4 MCNP   MCNPX Xcom Exp. Geant4 MCNP

1.5 4.87E-02 5.03E-02 5.71E-02 5.16E-02 5.30E-02   1.5 4.96E-02 5.03E-02 4.90E-02 5.05E-02 5.25E-02

2 4.12E-02 4.36E-02 4.39E-02 4.30E-02 4.37E-02   2 4.12E-02 4.37E-02 5.20E-02 4.81E-02 4.42E-02

3 3.43E-02 3.62E-02 3.67E-02 3.60E-02 3.72E-02   3 3.36E-02 3.65E-02 4.48E-02 4.04E-02 3.81E-02
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4 2.89E-02 3.22E-02 3.28E-02 3.21E-02 3.24E-02   4 2.98E-02 3.28E-02 3.95E-02 3.68E-02 3.29E-02

5 2.49E-02 2.98E-02 3.20E-02 3.03E-02 3.13E-02   5 2.63E-02 3.06E-02 4.30E-02 4.04E-02 3.08E-02

6 2.36E-02 2.83E-02 2.91E-02 2.83E-02   6 2.48E-02 2.92E-02 2.81E-02 2.92E-02

Energy 
(MeV)

Steel-magnetite

MCNPX Xcom Exp. Geant4 MCNP

1.5 4.98E-02 4.98E-02 4.31E-02 4.65E-02 5.18E-02

2 4.09E-02 4.34E-02 3.97E-02 4.02E-02 4.23E-02

3 3.29E-02 3.64E-02 3.60E-02 3.71E-02 3.63E-02

4 2.88E-02 3.29E-02 3.52E-02 3.30E-02 3.32E-02

5 2.56E-02 3.09E-02 3.41E-02 3.20E-02 3.20E-02

6 2.38E-02 2.97E-02 2.88E-02 2.90E-02

Table 1 (b): Mass attenuation coefficient dosimetric materials using MCNPX and comparison with XCOM, Expt and Geant4.

Energy 
(MeV)

LiF   Energy 
(MeV)

C4H6BaO4

MCNPX XCOM Expt Geant4   MCNPX XCOM Expt Geant4

0.2792 7.31E-02 1.02E-01 1.01E-01 9.70E-02   0.2792 1.76E-01 1.68E-01 1.65E-01 1.61E-01

0.3201 6.98E-02 9.66E-02 9.50E-02 9.00E-02   0.3201 1.41E-01 1.43E-01 1.41E-01 1.33E-01

0.514 5.70E-02 7.98E-02 8.01E-02 7.10E-02   0.514 7.76E-02 9.38E-02 9.28E-02 8.80E-02

0.6616 4.97E-02 7.15E-02 7.11E-02 6.80E-02   0.6616 6.05E-02 7.92E-02 7.91E-02 7.40E-02

1.115 3.63E-02 5.57E-02 5.55E-02 5.20E-02   1.115 3.96E-02 5.82E-02 5.83E-02 5.50E-02

1.173 3.51E-02 5.45E-02 5.37E-02 5.10E-02   1.173 3.80E-02 5.68E-02 5.71E-02 5.10E-02

1.333 3.22E-02 5.11E-02 5.06E-02 4.80E-02   1.333 3.44E-02 5.31E-02 5.29E-02 4.90E-02

Energy 
(MeV)

CdSO4   Energy 
(MeV)

SrSO4

MCNPX XCOM Expt Geant4   MCNPX XCOM Expt Geant4

0.2792 1.42E-01 1.45E-01 1.43E-01 1.42E-01   0.2792 1.04E-01 1.22E-01 1.21E-01 1.23E-01

0.3201 1.17E-01 1.26E-01 1.25E-01 1.20E-01   0.3201 9.18E-02 1.11E-01 1.10E-01 1.08E-01

0.514 7.13E-02 8.86E-02 8.72E-02 8.10E-02   0.514 6.37E-02 8.48E-02 8.46E-02 8.00E-02

0.6616 5.82E-02 7.63E-02 7.60E-02 7.10E-02   0.6616 5.39E-02 7.46E-02 7.41E-02 7.50E-02

1.115 3.96E-02 5.72E-02 5.72E-02 5.00E-02   1.115 3.79E-02 5.71E-02 5.73E-02 5.10E-02

1.173 3.80E-02 5.58E-02 5.63E-02 5.10E-02   1.173 3.65E-02 5.59E-02 5.61E-02 5.00E-02

1.333 3.46E-02 5.22E-02 5.24E-02 5.30E-02   1.333 3.34E-02 5.23E-02 5.25E-02 5.40E-02

Energy 
(MeV)

CaSO4   Energy 
(MeV)

CaCO3

MCNPX XCOM Expt Geant4   MCNPX XCOM Expt Geant4

0.2792 8.50E-02 1.12E-01 1.12E-01 1.09E-01   0.2792 8.53E-02 1.12E-01 1.11E-01 1.01E-01

0.3201 7.99E-02 1.06E-01 1.05E-01 1.04E-01   0.3201 7.98E-02 1.06E-01 1.04E-01 1.00E-01

0.514 6.30E-02 8.67E-02 8.62E-02 8.10E-02   0.514 6.28E-02 8.67E-02 8.59E-02 8.40E-02

0.6616 5.50E-02 7.75E-02 7.77E-02 7.30E-02   0.6616 5.48E-02 7.75E-02 7.72E-02 7.10E-02

1.115 3.97E-02 6.03E-02 6.05E-02 6.50E-02   1.115 3.95E-02 6.03E-02 6.05E-02 6.30E-02

1.173 3.83E-02 5.90E-02 5.91E-02 5.30E-02   1.173 3.81E-02 5.90E-02 5.91E-02 5.90E-02

1.333 3.50E-02 5.52E-02 5.53E-02 5.80E-02   1.333 3.49E-02 5.52E-02 5.54E-02 5.10E-02
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Energy 
(MeV)

BaSO4   Energy 
(MeV)

3CdSO4.8H2O

MCNPX XCOM Expt Geant4   MCNPX XCOM Expt Geant4

0.2792 1.78E-01 1.71E-01 1.68E-01 1.76E-01   0.2792 1.37E-01 1.40E-01 1.38E-01 1.29E-01

0.3201 1.41E-01 1.44E-01 1.42E-01 1.49E-01   0.3201 1.15E-01 1.24E-01 1.23E-01 1.13E-01

0.514 7.75E-02 9.24E-02 9.00E-02 9.30E-02   0.514 7.07E-02 9.00E-02 8.90E-02 9.10E-02

0.6616 6.12E-02 7.75E-02 7.75E-02 7.20E-02   0.6616 5.76E-02 7.80E-02 7.79E-02 7.10E-02

1.115 4.00E-02 5.65E-02 5.64E-02 5.10E-02   1.115 3.93E-02 5.90E-02 5.91E-02 5.00E-02

1.173 3.86E-02 5.52E-02 5.54E-02 5.10E-02   1.173 3.78E-02 5.76E-02 5.81E-02 5.20E-02

1.333 3.46E-02 5.15E-02 5.16E-02 5.40E-02   1.333 3.46E-02 5.39E-02 5.37E-02 4.80E-02

Energy 
(MeV)

CaSO4.2H2O   Energy 
(MeV)

Perspex

MCNPX XCOM Expt Geant4   MCNPX XCOM Expt Geant4

0.2792 8.48E-02 1.14E-01 1.13E-01 1.08E-01   0.2792 8.42E-02 1.18E-01 -- 1.48E-01

0.3201 7.97E-02 1.08E-01 1.07E-01 1.00E-01   0.3201 7.99E-02 1.12E-01 -- 1.44E-01

0.514 6.30E-02 8.86E-02 8.84E-02 8.90E-02   0.514 6.42E-02 9.30E-02 -- 9.78E-02

0.6616 5.50E-02 7.92E-02 8.33E-02 7.60E-02   0.6616 5.62E-02 8.33E-02 -- 8.26E-02

1.115 3.97E-02 6.16E-02 6.19E-02 6.90E-02   1.115 4.06E-02 6.50E-02 -- 7.19E-02

1.173 3.84E-02 6.03E-02 6.05E-02 6.20E-02   1.173 3.99E-02 6.36E-02 -- 7.23E-02

1.333 3.51E-02 5.65E-02 5.62E-02 5.40E-02   1.333 3.61E-02 5.95E-02 -- 6.02E-02

Energy 
(MeV)

Alanine   Energy 
(MeV)

Bakelite

MCNPX XCOM Expt Geant4   MCNPX XCOM Expt Geant4

0.2792 8.28E-02 1.18E-01 -- 1.62E-01   0.2792 8.32E-02 1.16E-01 -- 1.41E-01

0.3201 7.91E-02 1.12E-01 -- 1.44E-01   0.3201 7.90E-02 1.10E-01 -- 1.41E-01

0.514 6.38E-02 9.29E-02 -- 1.07E-01   0.514 6.38E-02 9.10E-02 -- 1.04E-01

0.6616 5.61E-02 8.32E-02 -- 8.37E-02   0.6616 5.59E-02 8.15E-02 -- 8.07E-02

1.115 4.04E-02 6.49E-02 -- 5.64E-02   1.115 4.03E-02 6.36E-02 -- 6.23E-02

1.173 3.85E-02 6.35E-02 -- 6.93E-02   1.173 3.89E-02 6.22E-02 -- 7.10E-02

1.333 3.56E-02 5.94E-02 -- 5.92E-02   1.333 3.56E-02 5.82E-02 -- 5.84E-02

3. Results and Discussion
The simulated MCNPX, theoretical XCOM, other 
simulations (Geant4 and MCNP) along with possible 
experimental results of mass attenuation coefficient 
(µ/ρ) values for different photon energies are given in  
Table 1 (a)-(b). In general, it was found that the µ/ρ values 
for the concretes and dosimetric materials were very close 
to theoretical XCOM data, experimental results and other 
simulations. The slightly higher deviation in results is noted 
in the present investigation as compared with previous 
simulations. The possibility for deviation in the results may 
be the cross section files or computer features. The µ/ρ values 
calculated by MCNPX for dosimetric materials containing 
barium (BaSO4 and C4H4BaO4) were found to be slightly 
higher than the remaining results for all the selected photon 
energies. The discrepancies in the µ/ρ values in present 
simulation and previous investigations could be due to more 

precise arrangement for high-atomic number element in the 
experimental set-up. However, at intermediate and high 
energies the MCNPX results were found in good agreement 
with theoretical XCOM data, experiment results and other 
simulation results. The µ/ρ values for Bakelite and concrete 
using MCNPX and Fluka [25] were also found comparable. 
It can be concluded that mass attenuation coefficients for 
compound or composite materials having low-as well as 
high-atomic number elements for low- to high-energy of 
photons are found comparable with the experiment and 
Geant-4, MCNP and Fluka simulation codes.

Conclusion
The MCNPX was used for simulation of mass attenuation 
coefficients for the concretes, results were found to be 
comparable with the theoretical XCOM values and 
experimental data. It can be concluded that mass attenuation 
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coefficients for compound or composite materials having 
low-as well as high- atomic number elements for low- to 
high-energy of photons are found comparable with the 
experiment and Geant-4, MCNP and Fluka simulation 
codes. The present geometry can be used as standard 
geometry for MCNPX simulation for low- as well as high-
atomic number element materials. The present study would 
very useful for alternate gamma-ray interaction simulation 
tool for various energies for radiation dosimetry, medical 
and nuclear technology. 
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