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In this paper, we model the nuclear potential using Woods-Saxon and Yukawa interaction as the mean 
field in which each nucleon experiences a central force due to rest of the nucleons. The single particle 
energy states are obtained by solving the time independent Schrodinger wave equation using matrix 
diagonalization method with infinite spherical well wave-functions as the basis. The best fit model 
parameters are obtained by using variational Monte-Carlo algorithm wherein the relative mean-squared 
error, christened as chi-squared value, is minimized. The universal parameters obtained using Woods-
Saxon potential are found to be matched with literature reported data resulting a chi-square value of 
0.066 for neutron states and 0.069 for proton states whereas the chi-square value comes out to be 1.98 
and 1.57 for neutron and proton states respectively by considering Yukawa potential. To further assess 
the performance of both the interaction potentials, the model parameters have been optimized for three 
different groups, light nuclei up to 16O - 56Ni, heavy nuclei 100Sn - 208Pb and all nuclei 16O - 208Pb. It is 
observed that Yukawa model performed reasonably well for light nuclei but did not give satisfactory 
results for the other two groups while Woods-Saxon potential gives satisfactory results for all magic 
nuclei across the periodic table.
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1. Introduction
One of the successful models for explaining the sudden 
increase in binding energy, at N or Z = 2, 8, 20, 50, 82 and 
126 called as magic numbers, is the nuclear shell model [1]. 
The interaction is modeled as harmonic oscillator, a central 
mean field potential experienced by each nucleon due to rest 
of the nucleons. The actual shell closures were obtained only 
after including the spin-orbit interaction that is introduced 
as proportional to derivative of the mean field potential, 
whose experimental evidence has been found later [2]. There 
are other potential which have been suggested such as square 
well, cosh geometry [3] given by
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where V0 is the depth of the well, R is radius of the nucleus and 
a is the diffuse parameter, but the most successful Woods-Saxon 
potential [4] for explaining shell closures is given as
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R = 1.28A(1/3) fm, A is the mass number of the nucleus and 
a = 0.66 fm.

Fundamentally, the interaction between nucleons 
is best understood by the Yukawa potential. Gauthier [4] 
has utilized this fundamental interaction to explain the 
emergence of volume and surface terms in semi-empirical 
mass formula, which are otherwise classically modeled on 
the analogy of liquid drop model. Later, this methodology 
has been extended to provide basis for mean-field nuclear 
potential in the Yukawa model [5] where, net potential for 
neutrons is given by
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Here, g2 is the universal constant, of order of 0.1ћc (20 
MeV-fm), which represents strength of nuclear force, and 
λ represents interaction range, it has a value of the order of 
1.43 fm. But for reproducing all magic nuclei numbers, spin 
orbit potential Vls has to be added to mean field potential 
whose functional form is given by
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In addition to this, for protons states, Coulomb interaction 
has to be included which is introduced as:
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where Z Z' = −1 , e is the charge of proton and εo is the 
permittivity of vacuum.

While plotting and neutrons and proton states for 
40Ca nuclei, both Yukawa and Woods-Saxon potentials 
shows good resemblance with each other and is shown 
in Figures 1(a) and (b) respectively. Our PER group has 
already solved the time independent Schrodinger equation 
(TISE) using the matrix method as proposed by Marsiglio 
et al., [6, 7] for various potentials such as square well 
[8], anharmonic [9], Morse [10] and Woods-Saxon [11]. 
Recently, we have optimized the model parameters for the 
Morse potential by proposing a variational Monte-Carlo 
(VMC) technique [12]. We have also utilized this Morse 
potential to model the n-p interaction in deuteron and 
obtained the scattering phase shifts all the way up to 300 
MeV successfully [13].

In this paper, our main objectives are:

1. To determine the single particle neutron and proton 
energies using both Woods-Saxon and Yukawa models 
utilizing matrix methods [6] and

2. To optimize the model parameters using variational 
Monte-Carlo technique [12] by minimizing the relative 
mean-square error, christened as chi-squared error.

In Section 2, the simulation methodology is briefly described 
and the results are discussed in detail in Section 3. Finally, we 
draw our conclusions in Section 4.

Figure 1 : V (MeV) vs r(fm) plots of Ca-40 for (a) Proton and (b) Neutron. Red and blue curve represent Woods-Saxon and Yukawa potentials 
respectively.

2. Simulation Methodology

2.1. Preparation of System for Numerical 
Solution
Choice of numerical technique: Here, we utilize Marsiglio 
matrix diagonalization technique whose central idea is to 
embed any potential of interest within an infinite square 
well potential of width ‘a’ i.e using simple sine basis. The 

time independent Schrodinger equation (TISE) in Dirac 
notation is written as

 H u E u≥ >  (1)

where
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Here, Vinf(r) corresponds to infinite square well 
potential and the effective potential Veff(r) is defined as 
V r V r V r V reff c f ls( ) = ( ) + ( ) + ( ). .
where
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as basis functions, the wave function u(r) is written as linear
combination of jn r( )  as
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where cn are the Fourier coefficients. Now substituting  
Eq. (4) in Eq. (1) following inner product with <m| and 
using orthonormality condition, final eigen value equation 
in matrix form is obtained as
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Here, Hnm is the matrix of infinite dimensions. To make it 
finite size, we prefer to choose N0 as number of basis functions.

2.2. Rephrasing of Potentials in Appropriate 
Units 
The Woods-Saxon, Yukawa and spin-orbit potentials are 
already defined in MeV. So, we need to rephrase remaining 
two potentials only.
(i) Rephrasing of centrifugal potential: Vcf is the 

centrifugal term, which increases as the orbital angular 
momentum of nucleon increases and is rephrased by 
multiplying both numerator and denominator with a 
factor of c2 and taking ћc = 197.329 MeV-fm as

 V
l l

c rc f. .

.
=

+( )( )1 197 329
2

2

2 2m
 

The reduced mass, µ is
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where mp is mass of proton (= 938.272MeV/c2) and mn is 
mass of neutron (= 939.565 MeV/c2)
(ii) Rephrasing of Coulomb potential: The coulomb 

potential defined in Section 1 is redefined as
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The system has been solved using matrix methods technique 
utilizing the code written[11] for obtaining the single 
particle energies by solving TISE for Woods-Saxon mean 
field potential and by redefining the potentials for VN(r) and 
VLS(r) as per the Yukawa model. The optimization of model 
parameters has been done by using the variational Monte-
Carlo technique code.

3. Results and Discussion

3.1. Optimization of Woods - Saxon Parameters 
using Monte-Carlo Approach
The Monte-Carlo algorithm is based on varying the model 
parameters randomly by small amount while variational 
approach involves minimizing the chi-square value in each 
iteration. In order to start with, WS parameter values have 
to be initialized firstly for neutron states which includes V0, 
a, R0, kappa. Since all these parameters are optimized earlier 
for 40Ca and 208Pb nuclei together in [11], therefore these 
are taken as initial guess for further optimization considering 
all doubly magic nuclei across the periodic table. Using these 
values, TISE is solved using matrix diagonalization technique as 
discussed earlier and energy values are determined. Now, we 
define relative mean square error, and call it the chi-square 
value which is to be minimized for obtaining convergence 
with the experimental data, as

X
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where N is the number of experimental energy levels 
available for a chosen nucleus. Here experimental data is 
taken from [14]. In each iteration, one of the parameters 
has been chosen randomly and has been varied by a value 
that has been randomly generated within an interval [-I, I]. 
This interval range is decremented after a certain number 
of iterations when the change in chi-square value is not 
substantial. The process is repeated till the chi-square value 
is far less than 1. The final optimized neutron parameters are 
given as input for calculation of proton states along with the 
addition of one more parameter i.e. charge radius, Rc which 
is set as 1.2 close to literature reported value. Again, VMC 
calculations were repeated for proton states taking all nuclei 
together. The optimized parameters along with chi-square 
value of neutron and proton levels taking all magic nuclei 
together are given in Table 1.
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Table 1: Chi-square values for groups of doubly magic nuclei across the periodic table for Woods-Saxon potential.

Neutron/Proton V0 Kappa a R0 r0 Rc chi-square

Neutron 51.48628 0.781218 0.5900557 1.286356 0.9194008 - 0.0661832

Proton 53.02575 0.5621975 0.598853 1.27966 0.802733 1.1210415 0.069

Similar calculations were repeated for Yukawa potential also. 
A total of five model parameters λ, g2, r0, R0 and RC (charge 
radius-initially chosen to be R0) are present in the simulation 
which needs to be optimized further.

3.2. Optimization of Yukawa Parameters using 
Monte-Carlo Approach
3.2.1. For 48Ca and 132Sn Nuclei
As a first step, we have determined the neutron and proton 
energy levels for 48Ca nucleus only due to the Yukawa model 
mean-field potential by choosing model parameters reported 
in literature as λ = 1.43 fm, g2 = 0.1 MeV fm, R0 = 1.28 
fm[2] as initial values for optimization. The final optimized 

parameters obtained after minimizing chi-square value 
for neutrons are: λ = 1.37, g2 = 0.11, R0 = 1.295, and  
r0 = 0.158 whereas for protons: λ = 1.54, g2 = 0.12,  
R0 = 1.295, Rc = 1.27, and r0 = 0.025 respectively. Using 
these values, the single particle neutron and proton energy 
states are determined using matrix method and are compared 
with experimental data. The data is tabulated in Table 2 and 
%error for each of the state calculated is shown along with 
chi-square value.

It is observed that, for the single particle neutron energy 
states of 48Ca, energies obtained for various l-values from 
Yukawa potential shows less than 17% error with chi-square 
value 0.20 and for proton states the %error obtained is less 
than 14% with chi-square value 0.18.

Table 2: Determination of Neutron and Proton energy levels of 48Ca nucleus and comparison with experimental available binding energies.

Neutron/Proton 
states

Simulated value Experimental 
value[14]

%error

Neutron

1d5/2 -17.27 -15.61 10.63

2s1/2 -14.25 -12.55 13.55

1d3/2 -11.16 -12.53 10.93

1f7/2 -8.33 -10.00 16.7

chi-square error 0.20

Proton
1d5/2 -18.55 -21.47 13.60

1d3/2 -17.27 -16.18 6.74

2s1/2 -17.26 -16.10 7.20

chi-square error 0.18

3.2.2. For 132Sn Nucleus
Next, another doubly magic nucleus 132Sn is considered 
and the best fitted parameters using VMC technique 
by minimizing chi-square value for proton were found 
which are: λ = 1.44, g2 = 0.12, R0 = 1.29, Rc = 1.25, 
and r0 = 0.11 and for neutron are: λ = 1.43, g2 = 0.109,  
R0 = 1.32, and r0 = 0.0944 respectively. Using these 
values, again single particle energy states for both neutron 
and protons are computed and are compared with those of 
corresponding experimental values available in Table 3. It 
is observed that simulated proton energies match well with 

experimental values almost perfectly and they remain within 
20% error for neutrons. This process of obtaining optimized 
parameters has been undertaken for each of the available 
doubly magic nuclei in the periodic table. It has been 
observed that the obtained values for single particle energies 
in all cases are having less than 20% error mostly when the 
parameters are optimized for each individual nucleus. Then, 
we have extended the simulation to obtain universal model 
parameters by considering three sets of nuclei to study the 
effectiveness of the Yukawa model in comparison to Woods-
Saxon model.

arXiv:0709.3525%20%5Bnucl-th%5D
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Table 3: Comparison of neutron and proton single particle energies for 132Sn nucleus with experimental values.

Neutron/Proton 
states

Simulated value Experimental 
value[14]

%error

Neutron

1g7/2 -7.85 -9.75 19.48

2d5/2 -10.18 -8.97 13.49

3s1/2 -8.91 -7.64 16.62

1h11/2 -6.24 -7.54 17.24

2d3/2 -8.09 -7.31 10.67

Proton
2p1/2 -16.01 -16.009 0.01

1g9/2 -15.71 -15.710 0.00

3.3. Optimization for Light, Heavy and all Nuclei
All available magic nuclei have been grouped into three 
categories i.e. 
(I) Light nuclei from 16O - 56Ni
(II) Heavy nuclei from 100Sn - 208Pb
(III) All nuclei 16O - 208Pb

and model parameters are determined for all three groups 
utilizing variational Monte-Carlo technique, by minimizing 
the chi-square value in least square sense. The best fit 
parameters along with chi-square values for each group are 
shown in Table 4 for neutrons and protons.

Table 4 : Chi- square values corresponding to best fit parameters for groups of doubly magic nuclei across the periodic table.

Neutron/ Proton Nucleus λ g2 R0 Rc r0 chi-square

Neutron

Light 1.65 0.12 1.587 - 0.05 1.11

Heavy 1.48 0.104 1.47 - 0.108 1.30

All 1.41 0.11 1.38 - 0.07 1.98

Proton

Light 1.45 0.135 1.28 0.60 0.07 0.42

Heavy 1.59 0.10 1.247 0.69 0.05 0.81

All 1.44 0.11 1.264 1.22 0.07 1.57

A few observations are in place here. Firstly, the value of λ 
is way away from experimental one of 1.43 in case of light 
nuclei for neutrons (1.65) and for heavy nuclei in case of 
protons (1.59). Secondly, the radius values for light and 
heavy nuclei in case of neutrons are slightly larger than the 
experimental value which should be in the range [1.2-1.3]. 
Finally, the value of RC, the charge radius of protons is 
almost half of the experimental value for both the light and 
heavy groups. Using the final parameter values given in 
Table 4 after grouping all nuclei across the periodic table, 
neutron and proton single particle energies are computed 
for 48Ca - a light nucleus, using both Yukawa and Woods-
Saxon potential. Further, these energies are compared 
with experimental values and corresponding % errors are 
calculated which are given in Table 5 and minimum chi-

square values are shown in bold. It indicates that while 
Yukawa potential works well for proton states, taking light 
nuclei parameters with chi-square value 0.03 but Woods-
Saxon shows better performance for neutron states as well 
as for proton states with chi-square value 0.22 and 0.01 
respectively. It is also clear that Woods-Saxon potential 
fares better in both cases when model parameters for all 
nuclei are considered. Similarly, a heavy nucleus 132Sn is 
considered and single particle energy states are calculated 
for both neutron and protons respectively which are 
compared with experimental data and is presented in 
Table 6. One should note that Woods-Saxon shows better 
performance for both heavy and light nuclei as compared 
to Yukawa potential shown by highlighting chi-square in 
bold.

arXiv:0709.3525%20%5Bnucl-th%5D
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Table 5: Comparison of Yukawa and Woods-Saxon energies with the experimental values for 48Ca nucleus.

Exp.
(MeV)
[14]

Yukawa
(MeV)
(light
nuclei
parameter)

%error Yukawa (MeV) 
(all nuclei 
parameters)

%error Woods-
Saxon (MeV) 
(all nuclei 
parameters)

%error

Neutron

1d5/2 -15.61 -18.53 18.71 -14.02 -10.19 -18.07 13.84

2s1/2 -12.55 -17.03 35.70 -11.98 -4.54 -14.14 13.31

1d3/2 -12.53 -16.61 32.56 -10.82 -13.65 -13.84 8.62

1f7/2 -10.00 -11.07 10.70 -5.89 -41.10 -8.72 16.40

Chi-square error 0.90 0.53 0.22

Proton

1d5/2 -21.47 -20.34 5.26 -13.59 36.70 -20.63 3.91

1d3/2 -16.18 -15.48 4.33 -10.00 38.20 -16.55 2.29

2s1/2 -16.1 -15.81 1.80 -10.57 34.35 -16.12 0.12

Chi-square error 0.03 2.38 0.01

Table 6: Comparision of Yukawa and Woods-Saxon energies with the experimental values for Sn-132 nucleus.

Exp.
(MeV)
[14]

Yukawa
(MeV)
(heavy
nuclei
parameters)

%error Yukawa
(MeV)
(all nuclei
parameters)

%error Woods-
Saxon 
(MeV) 
[11]

%error

Neutron 1g7/2 -9.75 -8.85 9.23 -11.07 13.54 -9.57 1.85

2d5/2 -8.97 -12.00 33.78 -13.13 46.38 -9.23 2.90

3s1/2 -7.64 -9.88 29.32 -11.29 47.77 -7.33 4.06

1h11/2 -7.54 -10.14 34.48 -9.85 30.64 -6.76 10.34

2d3/2 -7.31 -8.30 13.54 -10.21 39.67 -7.15 2.19

Chi-square error 0.56 1.14 0.02

Proton

2p1/2 -16.01 -12.07 24.61 -12.78 20.17 -16.01 0.00

1g9/2 -15.71 -10.56 32.78 -12.18 22.47 -15.36 2.23

Chi-square error 1.33 0.72 0.004

arXiv:0709.3525%20%5Bnucl-th%5D
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Conclusions
The nuclear potential has been modeled from first principles 
by using Yukawa potential and the obtained curve which 
is similar in appearance to that of Woods-Saxon curve has 
been utilized in TISE to solve for single particle energies 
of both neutrons and protons for various doubly magic 
nuclei across the periodic table. The model parameters have 
been optimized using variational Monte-Carlo technique 
by minimizing chi-square value between simulated and 
experimental data. These parameters have been obtained for 
each nucleus and also for groups of nuclei classified as light, 
heavy and all. It has been found that even though each of 
the nuclei’s data could independently converge closely to 
experimental values with their own set of parameters, the 
performance is not commendable when model parameters 
obtained for all nuclei are considered. The Yukawa model 
performs better in some cases for light nuclei as compared 
to the heavy group, but overall it is observed that the 
performance of Woods-Saxon potential is superior.
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