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Background: The nucleon-nucleus scattering has been studied using Gaussain potential with spin-
orbit term of Thomas type to fit the experimental scattering phase shifts (SPS). Recently, Hulthen 
potential without spin-orbit term has been utilised for studying α–nucleon scattering with phase 
function method (PFM). 
Purpose: The main objectives of this paper are:
1.  To obtain the best possible interaction potentials that best describe the neutron-α elastic SPS in 

various channels.
2.  To compute the partial cross-sections for scattering p-states and the total cross-section for the 

reaction.
Methods: The local interaction potential is modeled using Gaussian function. The non-local spin orbit 
term is chosen to be proportional to derivative of local potential. The phase function method has been 
numerically solved using 5th order Runge-Kutta method to compute the SPS. The model parameters 
are varied in an iterative fashion to minimise the mean absolute percentage error (MAPE) w.r.t. the 
experimental SPS. 
Results:
1.  The SPS for S, P and D channels have been obtained with MAPE values less than 3%.
2.  The partial cross-sections for p1/2 and p3/2 have been plotted and the respective resonance energies 

and FWHM have been found to be in reasonable agreement with values in literature.
3.  The total cross-section for the reaction has been determined and found to be matching well with 

experimental findings.
Conclusions: Gaussian potential with associated spin-orbit term has been shown to be a reasonably 
good choice for explaining the n-α scattering reaction.
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1. Introduction
The phenomenon that play an important role in 
understanding various nuclear properties is scattering. To 
highlight the underlying physics behind this scattering 
experiments, various theoretical models have been 
proposed. Scattering of light nuclei with nucleons and 
among themselves plays an important role in understanding 
the underlying interaction and gives information regarding 
their structure. The study of α-nucleon elastic scattering as 
a two-body problem at low energy has some importance in 
the cluster model [1-5] description of nuclei. An extensive 
study of alpha-nucleon systems has been done by several 
groups, where results of elastic scattering phase shifts are 
reported both from experimental and theoretical point of 
view [6-11]. Alpha-particles have a number of features that 

make interpreting studies with them easier. Because the 
alpha particle has such a stable and symmetric structure, 
its deformation by the oncoming nucleon in a collision 
can usually be ignored as a first approximation, and many 
terms in the equations either add or cancel. Alpha particle 
have zero spin, so that coupled equations don’t arise in the 
investigation of scattering, and polarization peculiarities 
are bound to the nucleon. It has no excited states beneath 
somewhere around 20 MeV. So, at lower energies, there can 
be no inelastic scattering to complicate the phenomena of 
scattering.

The generator coordinate method (GCM) or the 
resonating group method (RGM) [12] were oftenly used 
to model elastic scattering between light nuclei. The use 
of phenomenological two-body interactions in this model 
results in good agreement with experimental data for elastic 
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scattering phase shifts (SPS) [13, 14]. Satchler et al. [15] 
have used optical potential model and Dohet-Early and 
Baye [16] utilised the formalism of unitary correlation 
operator method to study α-nucleon elastic scattering below 
18 MeV and found good agreement with experimental data 
[17]. In the recent past, Laha and group [18-20] proposed 
a simple phenomenological potential model for α-nucleon 
elastic scattering using phase function method (PFM).

Buck et al., [21] have argued that for nucleus-nucleon 
and nucleus-nucleus system, one can consider local potential 
without the need for resorting to RGM. Further, they 
conclude that the non-local potential to be predominantly of 
similar form as that of local potential. They have obtained 
scattering phase shifts (SPS’s) for α —α and α — 3He system 
using local Gaussian potential as the model of interaction with 
reasonable success. We have obtained α — α SPS by PFM 
using Gaussian potential, for which the model potential have 
been obtained through solving time independent Schrodinger 
equation (TISE) using matrix method [22] in tandem with 
variational Monte-Carlo (VMC) [23]. Unlike α — α system, 
the n — α system which is the main focus of this paper has 
spin-orbit interaction to be present, that gives rise to various 
j-states observed. In order to obtain the SPS, we employ an 
innovative technique wherein the PFM is directly used in the 
optimization procedure for obtaining the model parameters 
that minimise the mean absolute percentage error (MAPE) 
between simulated and experimental data.

2. Methodology

2.1. Modeling n-α using Gaussian Potential
The local interaction potential is chosen as Gaussian form 
given by

 V r V e Vr
L S( ) = − +−

0

2α
 

.
 (1)

Where, V0 is the depth of potential and α is inverse range 
parameter.

The non-local potential due to spin-orbit interaction is 
of similar form as that of local potential and is given by [24]

 
V

r
r
d
dr

V e L S

r

L S
r� �

�
� �

�

. .=








 −( )( )

=










−0
2

0

0

1 2α

 ( )−
2

02
2

α αV e L Sr
� �
.

 (2)

with

 
� � �L S J J L L S S. = +( )− +( )− +( )( )

2

2
1 1 1  (3)

The centrifugal potential is

 V
l l

rcf =
+( )1
2

2

2



µ
 (4)

2.2. Phase Function Method (PFM):
The SchrÖdinger wave equation for a particle undergoing 
scattering have energy E and orbital angular momentum   
is given by
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Where k E= ( )/ / .

2 2µ
Second order differential equation Eq.5 has been transformed 
to the first order non-homogeneous differential equation of 
Riccati type [25, 26] given by
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The Bessel function for different ℓ is known by using
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Eq.6 is numerically solved using Runge-Kutta 5th order 
method with initial condition δ



0 0( ) = . For 
= 0 , the 

Riccati-Bessel and Riccati-Neumann functions ĵ0 and η̂0 
get simplified as sin(kr) and —cos(kr), so Eq.6, for 

= 0  
becomes
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In above equation the function ′ ( )δ0 k r,  was termed “Phase 
function” by Morse and Allis [27]. The phase function 
equation for =1 , i.e. P-partial wave, is of the form
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and that for = 2 , i.e. D-partial wave, is of the form
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The significant advantage of PFM method is that the phase-
shifts are directly expressed in terms of the potential and 
have no relation to the wavefunction. By using a suitable 
optimization technique we optimize the potential parameters 
to obtain the SPS’s which are in good agreement with 
experimental SPS.

2.3. Partial & Total Cross-section from SPS
Once, SPS are obtained, one can calculate the partial cross-
section σ



E( )  for each orbital angular momentum   by 
using following formula as [28]
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where k E= 2 2µ /  with µ is the reduced mass and 
δl(E) is the phahe shift for the respective orbital angular 
momentum  . 

The total cross section is given by [5]
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where the δl
+ denotes the SPS for partial waves with total 

angular momentum J l= ±
1
2

 states with l ≥1.

3. Results and Discussion:

3.1. Optimization of Model Parameters
The SPS have been determined, using PFM for the Gaussian 
potential with spin-orbit coupling term, by fitting the 
potential parameters so as to obtain the best mean absolute 
percentage error (MAPE)-value defined as
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where δi
exp  and δi

sim  are the experimental and obtained 
phase-shifts. The smaller the resulting value of MAPE, the 
better the match between the two data sets. The potential 
parameters alongwith MAPE values for s, p and d-state are 
tabulated in Table 1.

3.2. SPS and Potentials
The obtained SPS for s1/2, p1/2 and p3/2-states are shown in 
Fig. 1. It has been observed that the obtained SPS for these 
states are in good agreement with that of Satchler et al. 
[15] upto Elab = 18MeV with MAPE values 1.04, 2.98 and 
1.17 respectively. For convienience, SPS plot for s1/2-state is 
shifted by 180o to avoid overlapping with other SPS plots. 
The SPS plots for d3/2 and d5/2 are plotted separately in Fig. 
2 to bring out their match with experimental data clearly, 
because the SPS for these are small as compared to other 
states. The left plot window is for d3/2 state with MAPE of 
2.58% and right one is for d5/2 state with MAPE of 1.32% 
with optimized potential parameters as given in Table I. For 
neutron energies above 10 MeV, the obtained phase shifts 
are not matching well and this is the reason for increase in 
overall MAPE values given in Table 1.

Figure 1: SPS for s1/2, p1/2 and p3/2-state with optimized potential 
parameters given in Table 1.

Table 1: Model Parameters for Gaussian potential with spin-orbit 
term.

State V0(MeV) α(fm-2) r0(fm) MAPE(%)

s1/2 70.71 0.43 1.04

p1/2 31.31 0.17 0.37 2.98

p3/2 71.69 0.22 0.72 1.17

d3/2 6.72 0.17 0.45 2.58

d5/2 35.74 0.24 0.39 1.32
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In Fig. 3, corresponding potentials for s, p and d states, 
obtained using optimized potential parameters given in 
Table I, are shown. The effect of spin-orbit coupling can be 
seen clearly in the ordering of potentials. The black curve 
which is for s1/2 is seen to be having maximum depth. This is 
followed by blue one for p3/2, brown for d5/2, red for p1/2 and 
finally d3/2 in green.

3.3. Partial & Total Cross-Section
Using obtained SPS, both partial cross-section σl(E) 
and total cross-section σT for n-α elastic scattering are 

calculated for Elab values up to 18 MeV using equation Eq. 
14-15. The partial cross-section for p1/2 state is shown in 
Fig.5. The resonance peaks in center of mass energy for p1/2 
and p3/2 are observed at 4.22 MeV and 0.93 MeV and their 
respective decay widths are 9.3 MeV and 0.91 MeV. It was 
observed that, for p1/2 state, both Er and Γ values are larger 
than the values quoted in literature [29-31]. In case of p3/2 
state both Er = 0.93, Γ = 0.91 lie within the respective 
ranges 0.68 < Er < 0.94, 0.52 < Γ < 1.02 quoted in 
literature.

Figure 2: SPS for d3/2(left) and d5/2-state(right) obtained with optimized potential parameters given in Table 1.

Figure 3: Interaction Potentials for s, .p and d-state with optimized 
potential parameters given in Table 1.

Figure 4: Interaction Potentials for s, p and d-states along with 

centrifugal term. 
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Figure 5: Partial cross-section for p1/2(left) and p3/2(right)-state.

Figure 6: Total cross-section (σT) for n-α scattering. Red dots are 
from our work and empty black circles are from [32].

Conclusion
We conclude that Gaussian potential with spin-orbit term 
is reasonably good choice of potential for calculating n-α 
scattering phase shifts using phase function method (PFM). 
Our computed phase shifts are in good agreement with 
Satchler et al. In addition, resonance energy Er and decay 
width Γ for resonant state p3/2 are in agreement with values 
given in literature but for p1/2 state, those values are larger 
than those given in literature, this is because p3/2 is the 
ground state with sharp resonance about 1MeV energy and 
the next state p1/2 is broad state.
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