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Abstract In this paper, we are interested to study the distinguishing features 
of the decaying radioactive compound nuclei 246Bk* and 220Th*, using the 
Dynamical Cluster-decay Model (DCM) with deformation β and non-coplanar 
degree-of-freedom Φ. 246Bk* and 220Th* have so-far been studied within the 
DCM, using quadrupole deformations (β2i), “optimum” orientations (θopt) of 
the two nuclei lying in the same plane (Φ=0o), which shows that there is a 
non-compound nucleus (nCN) content in the observed data. The first turning 
point Ra (equivalently, the neck-length ∆R in Ra=R1+R2+∆R), which fixes 
both the preformation and penetration paths, is used to best fit the measured 
evaporation residue (ER) and fusion-fission (ff) cross sections, σER, σff, 
respectively, in 220Th* and 246Bk*, formed via different entrance channels. In 
this work, we subsequently add higher multipole deformations, the octupole 
and hexadecupole (β3i, β4i), `compact’ orientations θci and Φ≠00, and look 
for their effects on the nCN contribution predicted by the DCM calculations 
referenced above.

Keywords: Dynamical cluster-decay model; deformed non-coplanar 
fragments; non-compound nucleus effects; radioactive nuclei. 

1. INTRODUCTION

Heavy-ion reactions present themselves as the best tools to study the nuclear 
reaction-mechanism and structure of nuclei. Our present study comprises the 
radioactive 220Th* and 246Bk* compound nuclei (CN) formed through different 
entrance channels, worked out within the Dynamical Cluster-decay Model 
(DCM). Gupta and collaborators [1-3] studied the case of CN 246Bk* formed 
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through 11B+235U and 14N+232Th channels, where the DCM calculations 
with quadrupole deformations (β2i) and “optimum” orientations (θopt) of the 
two nuclei lying in the same plane (co-planar nuclei, azimuthal angle Φ=0o), 
showed that for 11B+235U channel an amount of non-compound nucleus (nCN) 
contribution is required but for 14N+232Th channel it is a pure CN decays. 
More recently, the same DCM calculations for 220Th* [4] formed via entrance 
channels 16O+204Pb, 40Ar+180Hf, 48Ca+ 172Yb and 82Se+138Ba, using β2i alone 
with θopt and Φ=0o, show that the 3n and 5n decay channels are pure CN 
decay, but the 4n channel required an amount of nCN content treated as a 
quasi-fission (qf) process. In the present work, we subsequently add the higher 
multipole deformations, i.e., octupole and hexadecupole (β3i, β4i) deformations 
with corresponding “compact” orientations θci and non-coplanarity degrees-
of-freedom (Φ ≠ 0o). With inclusion of β2i-β4i, we notice that the “compact” 
orientation angles θci, calculated as per prescription [5], change by as much as 
36o and the “compact” Φc by as much as 34o for light-particles decays of 220Th* 
CN. The interesting point now is to see the effect of such large changes in θci on 
potential energy surfaces, etc., for the reactions 48Ca+172Yb [6] and 40Ar+180Hf 
[7] studied for 220Th*. Note that here, the targets 172Yb and 180Hf belong to 
strongly deformed rare-earth region which are expected [8] to contain the 
nCN decay effects, also studied recently in 48Ca+154Gd→202Po* reaction both 
experimentally [9] and theoretically [10]. On the other hand, for 246Bk*, both 

the CN and target nuclei in channels 11B+235U and 14N+232Th are from strongly 
deformed radioactive actinide region.

A brief description of the Quantum Mechanical Fragmentation Theory 
(QMFT)-based Dynamical Cluster-decay Model (DCM) is presented in 
Section 2, and our calculations and results discussed in Section 3, followed by 
a Summary in Section 4.

2. METHODOLOGY

The DCM [11,12] for the decay of hot and rotating CN is worked out in terms of 
relative separation coordinate R, mass (and charge) asymmetries η=(A1−A2)/
(A1+A2) [and ηZ = (Z1−Z2)/(Z1+Z2)], multipole deformations βλi (λ=2,3,4; 
i=1,2), orientations θi and the azimuthal angle Φ between the principal planes 
of two nuclei, shown in Fig. 1 for the co-planar Φ =0o case. In terms of these 
coordinates, for  partial waves, we define the CN decay/ production cross 
section for each fragment as
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where, P0, the pre-formation probability, refers to η-motion and P, the 
penetrability, to R-motion, both depending on , T, βλi, θi and Ф.

The P0 is the solution of stationary Schrödinger equation in η, at a fixed 
R=Ra, the first turning   point(s) of the penetration path(s) for different -values,
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with ν = 0,1,2,3...., referring to ground-state (ν = 0) and excited-state solutions. 
Then, preformation  

 P (A0 i ) ( ( ))= ψ η ηηR iA B
A

2 2
 (3)  

Here, Bηη, the mass parameters, are the smooth classical hydrodynamical 
masses [14], used for simplicity. In principle, one should use the cranking 
masses, based on the underlying shell model prescription.

For the first turning point Ra, in the case of the decay of a hot CN, we use 
the postulate [13]    

 R  R ( R R R Ra 1= , ) + ( , ) + ( , ) = ( , ) + ( , )1 2 2α α η α η ηΤ Τ ∆ Τ Τ ∆ Τt ,  (4)

with radius vectors R (i iα β αλ λ
λ

, ) = +








∑Τ R T Yi i i0

01( ) ( )( )  and the temperature 

dependent nuclear radii R0i(T), for the equivalent spherical nucleus (see Fig. 1, 
for the definition of angles α’s, etc.),

Figure 1: Schematic configuration of any two axially symmetric, deformed, oriented 
nuclei, lying in the same plane (Ф=00), based on Fig. 1 in [13].
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The penetrability P in Eq. (1) is the WKB integral,
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solved analytically [15] with the second turning point Rb satisfying 
V(Ra)=V(Rb)=Qeff=TKE(T) (see, Fig. 2 in Ref. [4]). This means that V(Ra,) 
acts like an effective Q-value, Qeff (T,), given by the total kinetic energy 
TKE(T).

The collective fragmentation potential VR(η, T) in Eq. (2), that brings in 
the structure effects of the CN in to the formalism, is calculated according 
to the Strutinsky renormalization (B = VLDM +δU; B is binding energy) 
procedure as, 
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Here, the macroscopic part VLDM of binding energy B(Ai,Zi,T) is temperature 
(T) dependent liquid drop energy of Davidson et al. [16] with its constants 

Figure 2: The same as for Fig. 1, but for non-coplanar nuclei (Ф≠00), based on Fig. 1 
in [24].
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at T=0 refitted by some of us [1, 12, 17] to give the experimental binding 
energies B, done more recently [1] for the 2003 Tables of Audi et al. [18], 
used here. Whenever the experimental B were not available, the theoretical 
estimates of Möller et al. [19] are used. The microscopic shell corrections part 
δU are the “empirical” estimates of Myers and Swiatecki [20] for spherical 
nuclei, also taken T-dependent, i.e., δU(T) = δU exp(− T2/T0

2) with T0=1.5 
MeV [21]. This means that the shell correction term δU(T) becomes nearly 
zero for T>4 MeV. The shell effects are also known to depend strongly on 
the deformation of a nucleus but a similar prescription for deformed nuclei 
is not available. However, here these effects are included to some extent in 
VLDM, since we essentially use the experimental binding energies [18] split 
into two contributions, VLDM and δU, with constants of VLDM at T=0 fitted to 
experimental binding energies. The T-dependence is also included in nuclear 
proximity potential VP (Blocki et al. pocket formula), Coulomb VC and 
-dependent potential V



, for deformed, oriented nuclei [22, 23]. 
The same formalism as above is used for non-coplanar nuclei (Ф≠ 0o, see 

Fig. 2), but by replacing for the out-of-plane nucleus (i = 1 or 2), the 
corresponding radius parameter R

i
(α

i
) with its projected radius parameter 

R
i
P(α

i
) in both the Coulomb and proximity potentials in Eq. (2). For the 

proximity potential, it enters via the definitions of both the mean curvature 
radius R  and the shortest distance s0 (see Ref. [24]). The R

i
P(α

i
) is determined 

by defining, for the out-of-plane nucleus, two principal planes X’Z’ and Y’Z’, 
respectively, with radius parameters R

i
(α

i
) and R

j
(δ

j
), such that their projections 

into the plane XZ of the other nucleus are 
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with dj
max given by the condition (for fixed Ф),
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Apparently, the Ф-dependence of the projected radius vector R
j
P(α

i
) is also 

contained in maximized R
j
P(δ

j
max). For further details, see Ref. [24]. Then, 

denoting by V
P

12
  the nuclear proximity potential for the nucleus 1 to be 

out-of-plane, and by V
P

21 for the nucleus 2 to be out-of-plane, the effective 
nuclear proximity potential can be approximated by VP=1/2[VP

12+VP
21]. 

Note, for co-planar and identical (both nuclei same) non-coplanar nuclei 
VP

12=VP
21.

3. CALCULATIONS AND RESULTS 

For making a comparative study of the decaying 246Bk* and 220Th* radioactive 
CN and their distinguishing features, Fig. 3 shows our DCM calculated decay-
channel cross sections for (a) 246Bk* and  (b) 220Th*, each for two different 
entrance channels at a fixed CN excitation energy ECN

* for the three cases of 
β2i-alone with θopt and co-planar nuclei Φ=0o, the β2i-β4i, θci, Φ=0o and Φ≠0o 
cases, together with the available experimental data. Here, the scattering 
potential V(R) and fragmentation potential V(η), like the ones in Figs. (2) and 
(8) of Ref. [4], are calculated for fixed Ra (equivalently, fixed neck-length ∆R 
in Ra=R1+R2+∆R), which fixes both the penetration and preformation paths, 
for a best fit of the observed decay-channel cross sections (σff for 246Bk* and 
σxn, x=3-5 for 220Th*), keeping the root-mean square (r.m.s) deviation between 
the calculated and experimental decay-channel cross section, at each ECN

*, 
to a minimum value. Such calculations for the radioactive CN 246Bk* formed 
through 11B+235U and 14N+232Th entrance channels by Gupta and collaborators 
[1-3], using quadrupole deformations β2i-alone, θopt and Φ=0o, show the 
presence of quasi-fission (qf)-like nCN component in fission cross section of 
11B+235U channel, but not in 14N+232Th channel (see, Fig. 3(a)). Here, the (qf-
like) nCN component is defined as the measure of disagreement between the 
calculated and measured fission cross section, taken as a measure of fusion 
cross section σfus. Interestingly, however, with higher-multipole deformations 
β2i- β4i, “compact” orientations θci, and Ф not-included (Ф=00) or included 
(Φ≠0o), the nCN contribution in14N+232Th channel remains the same, i.e., zero 
nCN, but for 11B+235U→246Bk* reaction also, the nCN content get reduced to 
zero successively, at all ECN

*. Thus, the predicted nCN in 246Bk* for entrance 
channel 11B+235U is simply an artefact of our calculations of including/ or not-
including β2i-β4i with θci and non-coplanarity Φ. 



Distinguishing 
Features of 

Radioactive 
Compound Nucleus 

Decays within the 
Dynamical Cluster-

decay Model

261

Recently, the DCM calculations for 220Th* [4], formed through the entrance 
channels 40Ar+180Hf and 48Ca+ 172Yb, using β2i alone, “optimum” orientation 
θopt and co-planar nuclei Φ=0o show that there is an nCN contribution in the 
observed 4n decay channel, but the 3n and 5n decay channels fit the data as pure 
CN decays. Note that, in these reactions, the targets 172Yb and 180Hf belong to 
lanthanide region of strongly deformed rare-earth nuclei, which are expected 
to contain the nCN decay effects. Figure 3(b) shows the interesting result in 
case of CN 220Th*, relative to the ones above for 246Bk*, both being radioactive 
nuclei, that with the inclusion of β2i-β4i, θci, Φ=0o or Φ≠0o, there is still the same 
amount of nCN contribution present in 4n decay channel which could not be 
reduced/ or removed. In other words, it seems that the nCN contribution in 
220Th* is real, and, unlike 246Bk*, not an artefact of our calculations. 

Thus, the above result seems to suggest either the significance of βλi (λ=2-
4) and Φ degrees-of-freedom in oriented heavy ion reactions, or that it is the 
characteristic, distinguishing features of the chosen entrance channels or of the 
decaying compound nucleus. Note that the entrance channels for 246Bk* refer 
to very asymmetric target-projectile combinations with targets from strongly 
deformed actinide region, and that the ones for 220Th* refer to targets from 
deformed rare-earth region.

Figure 3: DCM calculated CN cross sections for (a) 246Bk* (b) 220Th*, for different 
entrance channels, compared with experimental data. These calculations are for the 
three cases of (i) β2i-alone with θopt and co-planar nuclei Φ=0o, (ii) β2i-β4i, θci, Φ=0o and 
(iii) β2i-β4i, θci, Φ≠0o.



Hemdeep, 
Chopra, S
Kaushal, P 
Gupta, RK

262

4. SUMMARY AND CONCLUSIONS 

In this paper, we have made a comparative study of two decaying radioactive 
compound nuclei 220Th* and 246Bk* from the point of view of including/ or not-
including the higher multi-pole deformations (β3i, β4i), “compact” orientations 
(θci) of two nuclei with non-coplanarity (Ф) also as the degree-of-freedom, 
and looked for their effects on the nCN cross section. In the case of 246Bk*, 
the βλi

 (λ=2-4) or non-coplanarity degree-of-freedom Φ nullifies the nCN 
contribution observed in the β2i-alone with Φ=0o case, showing both the 
reaction channels as pure CN decays. On the other hand, for the case of 220Th* 
there is no change in the nCN contribution and thus manifests the presence of 
nCN content in CN formed through deformed rare-earth targets. Experimental 
verification is called for.

Concluding, deformations of nuclei, including higher multi-poles, i.e., 
βλi (λ=2-4), their compact orientations and non-coplanarity Φ show their 
importance in heavy-ion reactions via the nCN content in pure CN decays. 
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