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Abstract The fusion excitation functions for the fusion of 32S on 90,96Zr have 
been calculated larger value, while using one-dimensional barrier penetration 
model, taking scattering potential as the sum of Coulomb and proximity 
potential and the calculated values are compared with experimental data with 
considerations to shape degrees of freedom. At and above the barrier the 
computed cross sections match well with the experimental data, whereas below 
the barrier, calculations with nuclear surface tension coefficient improved 
by Reisdorf in the proximity potential with considerations to shape degrees 
of freedom give an approximate fit. Reduced reaction cross sections for the 
systems 32S on 90,96Zr have also been described.
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1. INTRODUCTION

Many investigations, both experimental and theoretical, on heavy-ion fusion 
reactions in low energy range near and below the Coulomb barrier [1-10] have 
been an area of extensive studies for many years in Nuclear Physics. As the 
synthesis of superheavy elements (SHEs) is a very interesting problem and 
a hot topic nowadays, the observations in heavy-ion systems at and near the 
Coulomb barrier energies are quite important for the understanding of the 
complexity of collision processes at low energies. In the analysis of heavy-ion 
fusion reactions an internuclear interaction consisting of repulsive Coulomb 
and centrifugal potentials and attractive nuclear potential, which is a function 
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of the distance between centers-of mass of the colliding nuclei plays a major 
role. The total potential attains a maximum value at a distance where the 
repulsive and attractive forces balance each other, referred to as Coulomb 
barrier and the energy of relative motion must overcome this barrier in order 
for the nuclei to be captured and fused. 

Even though the simple one dimension barrier penetration model [1] 
explains the fusion reactions of heavy-ions above the barrier, the large 
enhancement in fusion cross-sections below the barrier in several orders 
of magnitude over those expected from the simple one dimension barrier 
penetration model can only be explained in terms of the coupling of relative 
motion to the internal degrees of freedom of the colliding nuclei, such as 
deformation [4, 11, 12], vibration [13–16], and nucleon transfer channels 
[17–20] or related to the gross features of nuclear matter such as neck formation 
[21, 22] between the two colliding nuclei. 

In the present work, the fusion excitation functions for the fusion of 32S 
on 90,96Zr have been calculated using one-dimensional barrier penetration 
model, taking scattering potential as the sum of Coulomb and proximity 
potential [23] and the calculated values are compared with experimental 
data [24] with considerations to shape degrees of freedom. Reduced reaction 
cross sections for the systems 32S+90Zr and 32S+96Zr have been described, 
by using the usual reduction procedure of dividing the cross section by 
 πR0

2 , where R0  is the barrier radius and the division of energy by Coulomb 
barrier.

2. THEORY

2.1. The potential 

Nuclear reactions are exclusively governed by the nucleus-nucleus potential 
and discovering a unique nuclear potential that describes the different reaction 
mechanisms is therefore a challenge for the last several years in Nuclear 
Physics.

It was shown that the nuclear potential can be written as a product of 
geometrical factor (proportional to the reduced radii of colliding nuclei) 
and a universal function so as to incorporate the role of different colliding 
nuclei in the geometrical factor. In this effort, the proximity potential 
of Blocki et al. [25] provides a simple formula for the nucleus-nucleus 
interaction energy as a function of the separation between the surfaces of 
the approaching nuclei. The formula is free of adjustable parameters and 
makes use of the measured values of the nuclear surface tension and surface 
diffuseness.
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The interaction barrier for two colliding nuclei is given as:

 V Z Z e
r

V z
rP= + +
+1 2

2 2

2
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2
( ) ( )� � �

µ
 (1)

where Z1  and Z2  are the atomic numbers of the projectile and the target, r 
is the distance between the centers of the projectile and the target, z is the 
distance between the near surfaces of the projectile and the target,   is the 
angular momentum, µ  is the reduced mass of the target and the projectile and 
V zP ( )  is the proximity potential given as:

 V z b C C
C C

z
bP ( )= +






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1 2
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with the nuclear surface tension coefficient, 

 γ = − −0 9517 1 1 7826 2 2. [ . ( ) / ]N Z A  (3)

φ , the universal proximity potential is given as:

 φ ξ ξ ξ( ) . exp( / . ), .=− − ≥4 41 0 7176 1 9475for  (4) 

  φ ξ ξ ξ ξ ξ( ) . . . . , .=− + + − ≤ ≤1 7817 0 9270 0 01696 0 05148 0 1 94752 3 for  (5)

  φ ξ ξ ξ ξ ξ( ) . . . . ,=− + + − ≤1 7817 0 9270 0 0143 0 09 02 3 for  (6)

with ξ= z b/ , where the width (diffuseness) of nuclear surface b≈1 and 

Siissmann Central radii Ci  related to sharp radii Ri  as C R b
Ri i
i

= −
2

.

For Ri , we use the semi empirical formula in terms of the mass number 
Ai  as:

 R A Ai i i= − + −1 28 0 76 0 81 3 1 3. . ./ /

 (7)

During the last three decades several attempts have been made to improve the 
proximity potential [26, 27]. In these works an improved version of nuclear 
surface tension co-efficient is presented by Reisdorf as: 
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 γ = − −1 2496 1 2 3 2 2. [ . ( ) / ]N Z A  (8)

The choice of the potential and its form to be adopted is one of the most 
challenging aspects, when one wants to compare the experimental fusion 
data with theory, both below and above the barrier. Among such potentials, 
proximity potential is well known for its simplicity and numerous applications 
in different fields. It is based on the proximity force theorem according to which 
the nuclear part of the interaction potential is a product of the geometrical 
factor depending on the mean curvature of the interaction surface and the 
universal function (depending on the separation distance) and is independent 
of the masses of the colliding nuclei.

2.2. The fusion cross section

To describe the fusion reactions at energies not too much above the barrier and 
at higher energies, the barrier penetration model developed by C. Y. Wong [1] 
has been widely used for the last four decades, which obviously explains the 
experimental result properly. 

Following Thomas [28], Huizenga and Igo [29] and Rasmussen and 
Sugawara [30], Wong approximated the various barriers for different partial 
waves by inverted harmonic oscillator potentials of height E



 and frequency
ω


. For energy E, using the probability for the absorption of th partial wave 
given by Hill-Wheeler formula [31], Wong arrived at the total cross section 
for the fusion of two nuclei by quantum mechanical penetration of simple one-
dimensional potential barrier as:

 σ
π

π ω
=

+
+ −∑k E E2

2 1

1 2

�
�� �� exp[ ( ) / ]

 (9)

where k E
=

2
2

µ


. Here � �ω  is the curvature of the inverted parabola. Using 

some parameterizations in the region 
= 0  and replacing the sum in Eq. (9) 

by an integral Wong gave the reaction cross section as:
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ω π
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= +
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For relatively large values of E, the above result reduces to the well-known 
formula:
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For relatively small values of E, such that E < E0: 

 σ
ω

π ω= −[ ]R
E

E E0
2

0
0 02

2
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exp ( ) /  (12) 

Lefort and his collaborators [32] have shown that not a critical angular 
momentum but a critical distance of approach may be the relevant quantity 
limiting the complete fusion during a collision between two complex nuclei. 
In order to substantiate the finding of a critical distance of approach, it is 
necessary to check the linear dependence of σ  on 1/ E in the region of high 
energy. The value of critical distance was found to:

 R r A A r fmc c c= + = ±( ), . ./ /
1
1 3

2
1 3 1 0 0 07  (13)

Gutbrod, Winn and Blann from their analysis of low energy data [33], obtain 
the fusion distance as:

 R r A A r fmB B B= + =( ), ./ /
1
1 3

2
1 3 1 4  (14)

that is 40% larger than the value of Rc  and corresponds to the distance of the 
ions at the fusion barrier. In order to understand the difference between the two 
distances given by Eqs.(13) and (14), Glas and Mosel [34] set σ  as:

 σ π= +
=

∞

∑� �
�

2

0

2 1( )T Pi i
 (15)

whereTi  is the penetration probability and Pi C

C={ >
≤

0
1

,
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 

 

Replacing the sum in Eq.(15) by an integration one obtains:
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Below the barrier, the tunneling through the barrier has to occur in order to 
allow the fusion of the two nuclei and in terms of partial wave, the fusion cross 
section is given as:

 
σ

π
= +

=

=

∑k P
C

2
0

2 1( )



 

 (17)

where � ��C a CM R aR E V R
a in

= − =2 0µ η( ) ,( , , )  is the first turning point and ηin  
is the entrance channel asymmetry. Here, P is the WKB penetration probability 
given as:

 P V E dz
a

b

= − −
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where a and b are the inner and outer turning points defined as V a V b E( ) ( ) .= =
The Coulomb interaction between the two deformed and oriented nuclei 

[1] with higher multipole deformation included [35, 36] is given as, 
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where R A Ai i i0
1 3 1 31 28 0 76 0 8= − + −. . . ./ /

Here αi is the angle between the radius vector and symmetry axis of the ith 

nuclei.

2.3. The reduced reaction cross section

In order to compare the excitation functions of different reaction mechanisms 
induced by different projectiles on the same target nucleus, the procedure of 
eliminating the geometrical factors concerning different systems by ‘reducing’ 
the cross section and the centre-of-mass energy has extensively been used in 
recent years [24, 37, 38]. The normal procedure consists of the division of the 
cross section byπR0

2 , where R0 is the barrier radius and the division of energy 
by Coulomb barrier E0 .
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3. RESULTS AND DISCUSSION

Interaction barrier for the fusion of 32S on 90Zr has been plotted in Fig.1, 
against the distance between the centers of the projectile and the target. The 
dotted lines in Fig.1 represent the interaction barrier calculated by using the 
usual nuclear surface tension co-efficient given by Eq.(3), denoted as γ-old 
and the dashed line represents the result while using the improved version of 
nuclear surface tension co-efficient given by Eq.(8) denoted as γ-new, without 
considering the shape degrees of freedom of the projectile and the target. The 
dash-dotted line and the solid line represent the barrier calculations using 
nuclear surface tension co-efficient given by Eq.(3) and Eq.(8) respectively 
with considerations to deformations, using Eq.(19) for = 0. It should be 
noted that the barrier height E0  decreases and the barrier radius R0  shifts 
towards larger value, while considering the shape degrees of freedom for 
both the usual and the improved values of surface tension coefficients given 
by Eq.(3) and Eq.(8) respectively. In the both cases of with and without 
deformations the barrier height E0  decreases and the barrier radius R0  shifts 
towards larger value with improved value of the surface tension coefficient 
given by Eq. (8) than the usual value given by Eq.(3). Moreover, Eq. (8) gives 
deeper potential compared to Eq. (3).

Figure 1: Scattering potential for the projectile 32S on 90Zr target consisting of repulsive 
Coulomb and centrifugal potentials and attractive nuclear potential.
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At, above and below the barrier, the total fusion cross-sections for the 
reactions of 32S on 90,96Zr have been calculated by using the values of barrier 
height E0  and barrier radius R0  taken from the respective figures corresponding 
to Fig.1 and using Eqs. (9) to (19). Below the barrier, the fusion process has 
been treated as a tunneling process and we have calculated the fusion cross 
sections using Eq. (17) and Eq. (19). While considering the shape degrees of 
freedom, the experimental deformation parameter for 32S has been taken as 
β2 0 3120= . , in all calculations. In Figs. 2 and 3 the calculated fusion cross 
sections are compared with the experimental data [24]. 

In Figs. 2 and 3, in the reactions of 32S+90Zr and 32S+96Zr, at and above the 
barrier, the fusion cross-sections (solid diamonds) computed using Wong’s 
formula given by Eq. (9) and nuclear surface tension co-efficient given by Eq. 
(3) fit very well with the experimental data (solid up triangles), whereas below 
the barrier show some disagreement. 

In the case of 32S+90Zr reaction, in Fig. 2, at and above the barrier the 
barrier the fusion cross-sections (open circles) computed using Eq. (16) and 
nuclear surface tension co-efficient given by Eq. (3) also show good fit with 
the experimental data. Below the barrier, we have considered the fusion 
process as a tunneling process and the cross sections calculated using Eqs. (3), 
(17) and (19) show some agreement with the experimental data. In the above 

Figure 2: Comparison of measured fusion excitation functions of 32S+90Zr reaction, 
while using usual nuclear surface tension co-efficient given by Eq. (3).
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Figure 3: Comparison of measured fusion excitation functions of 32S+96Zr reaction, 
while using improved version of nuclear surface tension co-efficient given by Eq. (8).

Figure 4: Reduced reaction cross sections for the systems consisting of 32S on different 
targets 90Zr and 96Zr using the usual reduction procedure.
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calculation the experimental deformation parameter for 90Zr has been taken as
β2 0 0894= . . 

In Fig. 3, in the reaction of 32S on 96Zr, for getting a better result we have 
changed the value of the nuclear surface coefficient given by Eq. (3) by Eq. 
(8). It should be noted that the above the barrier, calculations using the nuclear 
surface tension co-efficient given by Eq. (8) along with Eq. (16) give good 
agreement with experimental data. Below the barrier, the computed fusion cross 
sections using Eq. (8) along with Eq. (17) and Eq. (19) give a comparatively 
better fit to the experimental results. The experimental deformation parameter 
for 96Zr has been taken as β2 0 0800= . . The enhancement in the measured 
cross sections reveals the importance of the inclusion of the couplings to the 
low-lying octupole vibrations in 32S+90Zr reaction and the inclusion of four 
sequential neutron transfer channels with the low-lying octupole vibrations in 
32S+96Zr reaction.

Fig. 4 represents the reduced reaction cross sections for the systems 
32S+90Zr and 32S+96Zr by the reduction procedure of dividing the cross section 
byπR0

2 and the energy by E0 . It should be noted that the reduced reaction 
cross section is larger for 32S+96Zr reaction than 32S+90Zr reaction.

4. CONCLUSIONS

At and above the barrier, the simple one dimension barrier penetration 
model developed by C. Y. Wong explains the fusion reactions of heavy 
ions very well, while using the scattering potential as the sum of Coulomb 
and proximity potentials. The enhancements in fusion cross sections below 
the Coulomb barrier orders of magnitude larger than the predictions of 
one dimension barrier penetration model reveals the important role played 
by nuclear structure of the colliding nuclei. Below the barrier larger 
deformations corresponds to large sub barrier enhancement of fusion cross 
sections.

Below the barrier the fusion process can be considered as a tunneling 
process and in the quantum mechanical tunneling of one dimension barrier 
penetration model the inclusion of nuclear deformation parameters in 
Coulomb and proximity potential model explains the nuclear fusion cross 
sections comparatively well. In the calculation of interaction barrier of 
deformed nuclei, the nuclear surface tension coefficient given by Reisdorf 
shows better results than the usual nuclear surface tension co-efficient of 
proximity potential. The reduced cross sections compare the different fusion 
reaction mechanisms induced by different targets with the same projectiles 
in the same figure. 
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