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Abstract With three fundamental gravitational constants assumed to be 
associated with strong interaction, electromagnetic interaction and gravity, we 
review the basics of final unification.
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1. INTRODUCTION

Even though ‘String theory’ models and “quantum gravity’ models [1, 2, 3] 
are having a strong mathematical back ground and sound physical basis, they 
are failing in implementing the Newtonian gravitational constant [4] in atomic 
and nuclear physics and thus seem to fail in developing a ‘workable’ model of 
final unification. It clearly indicates our lack of understanding and uncertain 
assumptions on which our current physics is being built up. The main issue 
is: to understand the basics of final unification from hidden, unknown and 
un-identified physics! Based on the old and ignored scientific assumption put 
forward by Nobel laureate Abdus Salam, we developed and compiled many 
interesting semi empirical relations assumed to be connected with nuclear 
physics, atomic physics and astrophysics [5, 6]. Based on ‘workability’, we 
appeal the readers to go through.
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2. TWO BASIC ASSUMPTIONS OF FINAL UNIFICATION

Assumption-1: Magnitude of the gravitational constant associated with the 
electromagnetic interaction is, Ge ≅ ±( )×2 375 0 002 37. . -10  m kg sec3 1 -2  .

Assumption-2: Magnitude of the gravitational constant associated with the 
strong interaction is, Gs ≅ ±( )×3 328 0 002. . 10  m kg sec28 3 -1 -2 . 

We chose (G
e
, G

s
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Considering the two pseudo gravitational constants assumed to be associated 
with strong and electromagnetic interactions, 

1) Currently believed generalized physical concepts like, proton-electron 
mass ratio, neutron life time, weak coupling constant, strong coupling 
constant, nuclear charge radius, root mean square radius of proton, melting 
points of proton and electron, nuclear charge radii, nuclear binding energy, 
nuclear stability, Bohr radius of hydrogen atom, electron and proton 
magnetic moments, Planck’s constant, atomic radii, molar mass constant 
and Avogadro number etc. can be reviewed in a unified approach and can 
be simplified. 

2) Significance of the ratio of nuclear gravitational constant and Newtonian 
gravitational constant can be understood and thereby magnitude of the 
Newtonian gravitational constant can be estimated in a unified approach.

3) Considering the ratio of nuclear gravitational constant and Newtonian 
gravitational constant, neutron star mass can be understood. 

3. TO UNDERSTAND THE ROLE OF NEWTONIAN 
GRAVITATIONAL CONSTANT IN NUCLEAR PHYSICS

After developing many relations, to a very good accuracy, we noticed that, 
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where M c Gpl N≅   is the Planck mass. To proceed further, let, 
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In terms of the nuclear Planck mass, 
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In a simplified picture, proton and electron rest masses and reduced Planck’s 
constant can be expressed in the following way.
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By fixing the magnitude of (G
S
), magnitude of (G

N
) can be fixed.

4. TO UNDERSTAND THE PLANCK’S CONSTANT AND TO FIX 
THE MAGNITUDE OF G

S

Proceeding further, it is possible to obtain the following relations. 
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Note that, these two relations are free from arbitrary coefficients and seem to 
be connected with quantum theory of radiation. With further research, if one 
is able to derive these two relations, unification of quantum theory and gravity 
can be made practical and successful. Based on these relations, 
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5. FITTING AND UNDERSTANDING THE NEUTRON LIFE TIME 
AND STRONG COUPLING CONSTANT

It may be noted that, during beta-decay, by emitting one electron and one 
neutrino, neutron transforms to proton.

Let, t
n
 be the life time of neutron, m

n
 be the rest mass of neutron and 

(m
n
 - m

p
) be the mass difference of neutron and proton. Then, quantitatively 

it is possible to show that, 
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where G
N
 is the Newtonian gravitational constant. Very interesting observation 

is that, the three gravitational constants seem to play a simultaneous role in 
deciding the neutron decay time and is for further analysis. Now, 
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With 1-2 % error, this obtained value can be compared with recommended [7] 
and experimental neutron life times of (878 to 888) [8]. With reference to the 
Weak coupling constant G

F
 and the proposed gravitational constant associated 

with strong interaction G
S
,
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Qualitatively, if one is willing to define the well believed strong coupling 
constant αs  with the following relation,
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error in estimation of neutron life can be minimized and can be expressed with 
the following relation.
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With reference to recommended value [7] of αs ≅ ±0 1185 0 0006. . , obtained 
tn ≅ 881 422.  sec
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With reference to recommended value of tn ≅ ±( )880 3 1 1. . sec , obtained 
αs ≅ 0 1188.

6. NUCLEAR CHARGE RADIUS AND ROOT MEAN SQUARE 
RADIUS OF PROTON

Nuclear charge radius can be expressed with the following relation.
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Considering this relation (23), magnitude of G
N
 can be estimated with the 

following relation.
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Root mean square radius of proton [7] can be expressed with the following 
relation.
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Considering this relation (25), magnitude of G
N
 can be estimated with the 

following relation. 
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7. TO FIT AND UNDERSTAND THE FERMI’S WEAK COUPLING 
CONSTANT

To a great surprise, it is noticed that[7], 
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From above relations, 
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Based on this relation (28), magnitude of G
N
 can be estimated with the 

following relation.
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8. TO FIT AND UNDERSTAND THE MEDIUM AND HEAVY 
NUCLEAR CHARGE RADII 

For atomic number greater than 23, nuclear charge radii [9] can be fitted with 
the following relation. 
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where Z ≥ 23  and G m cs p
2 0 62( )≤ .  fm

See the following table-1.
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9. NUCLEAR STABILITY AND NUCLEAR BINDING ENERGY AT 
STABLE MASS NUMBERS 

Proton-neutron stability [10] can be understood with the following relation 
Let A

S
 be the stable mass number of Z. If, 
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With relation (1) quantitatively it is possible to show that, A Z Zs -( )∝2 2  and 
needs further study at fundamental level. See colum-2 of table-2. With even-
odd corrections, accuracy can be improved. Quantitatively this relation can 
be compared with the computationally proposed relation (8) of reference [10] 
which takes the following form. 

 N Z Zs ≅ +0 968051 0 00658803 2. .  (32)

where NS is the neutron number of a nucleus with atomic number Z on the line of beta 
stability. Corresponding mass number can be expressed with the following relation. 

 A Z Zs ≅ +( ) +1 0 968051 0 00658803 2. .  (33)

Table 1: To fit nuclear charge radii.

Proton number Mass 
number

Estimated charge 
radii from relation

Charge radii from 
reference [9]

26 56 3.718 3.7377
36 86 4.200 4.1835
46 108 4.556 4.5563
56 138 4.900 4.8378
66 148 5.103 5.0455
76 192 5.444 5.4126
86 212 5.653 5.5915
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If Z = 92, obtained A
S
 and its actual stable mass number is 238.Considering 

even-odd corrections, some of the naturally occurring stable atomic nuclides 
can be fitted with this relation. In some cases there is some discrepancy in 
fitting the actual stable isotopes. In some cases there is some discrepancy in 
fitting the actual stable isotopes and we developed alternative procedure. See 
section-10.

Based on mass number, above relation (31) can also be expressed in the 
following form. 

 Z kA
k

≅
+ -4 1 1

4
  (34)

where A is any mass number. Close to stable atomic nuclides, nuclear 
binding energy [10] can be understood with the following relation. If 
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represent the respective self binding energies, then for Z 5≥( ),
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where R
P
 is the RMS radius of proton [2]. See the following table-2.

Table 2: Estimated stable mass numbers and their corresponding nuclear binding 
energy.

Proton 
number

Estimated Stable 
mass number

Estimated binding 
energy in MeV

6 12. 2 88.05
16 33.6 291.6
26 56.3 493.4
40 90.2 775.3
50 116.0 976.0

60 143.0 1176.4
70 171.4 1376.6
82 207.0 1616.7
92 238.2 1816.7
100 264.0 1976.5
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10. SEMI EMPIRICAL PROCEDURE FOR ESTIMATING NUCLEAR 
BINDING ENERGY AND NUCLEAR STABILITY

We would like to stress the fact that, close to stable atomic nuclides starting 
from Z = 30 to 100, nuclear binding energy is approximately equal to Z 
times 19.7 MeV. This can be validated from the semi empirical mass formula 
[10, 11] stability relation. 

 Z A
a a Ac a

≈
+( )2 2 2 3/

 (36)

where a ac a2 0 0157( )≅ . . With reference to semi empirical mass formula, 
maximum binding energy per nucleon is close to 8.8 MeV. Based on these two 
energy constants, there is a scope for understanding nuclear stability. By fitting 
the data starting from Z = 21 to 92, we try to estimate or predict stable heavy 
and super heavy atomic nuclides. For example, 

1) According to nuclear shell model, Z = 82 seems to be stable at N = 126. 
Fitted stable mass numbers of Z = 82 are 208 ±2  and corresponding 
number of neutrons are 126 ±2 .

2) According to observations, Z = 92 seems to be stable at N = 146. Fitted 
stable mass numbers of Z = 92 are 238 ±2  and corresponding number of 
neutrons are 146 ±2 .

3) According to modern theory, Z = 114 seems to be stable at N = 184 or 196. 
Predicted stable mass numbers of Z = 114 are 308 ±2  and corresponding 
number of neutrons are 194 ±2 . This prediction seems to be in-line with 
current understanding [12].

4) According to modern theory, Z = 164 seems to be stable at N = 318. 
Predicted stable mass numbers of Z = 164 are 482 ±2  and corresponding 
number of neutrons are 318 ±2 . This prediction also seems to be in-line 
with current understanding [12].

This semi empirical method involves five important steps as described here. 
For further details readers can refer our published paper [13]. 

Step1: To find the approximate binding energy of Z at stability zone. Based 
on relation (35), for Z 5≥( ),
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where (BE)A
s 

is the approximate nuclear binding energy of Z close to stable 
mass number, 19.75 MeV can be considered as the characteristic unified 
nuclear binding energy unit. 

Step2: To define a number X in the following way 

 X
BE

Z ZAs≈
( )

≈ + -















8 8 30
2

19 75

8 8.
.
. MeV

 MeV
 MeV 

   (38)

where 8.8 MeV can be considered as the maximum binding energy per nucleon 
and can be obtained from Iron and Nickel atomic nuclides. With reference 
to 8.8 MeV, X can be referred to the lowest possible imaginary stable mass 
number.
Step3: To define a number Y in the following way 

 Y
X Z
Z

≈
-( )2

2

 (39)

Step4: To estimate the approximate stable mass number in the following way 

 A X Y Ys ≈ + +( )2  (40)

where, A
S
 is the stable mass number of Z.

Step5: To estimate the actual stable mass number range with even – odd 
corrections
If Z is even and estimated stable mass number A

S is even, then actual stable 
mass number range can be estimated with the following correction. 

 Actual  range Estimated A As s≅ ± 2  (41)

If Z is even and estimated stable mass number A
S is odd, then actual stable 

mass number range can be estimated with the following correction

 Actual  range Estimated A As s≅ -( )±1 2  (42)

If Z is odd and estimated stable mass number AS is odd, then actual stable mass number 
range can be estimated with the following correction. 

 Actual  range Estimated A As s≅ ± 2  (43)
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If Z is odd and estimated stable mass number A
S is even, then actual stable 

mass number range can be estimated with the following correction. 

 Actual  range Estimated A As s≅ -( )±1 2  (44)

See the following table-3. Compromising points to be noted are: 
1) For even proton numbers, estimated range can be considered as the 

‘even-odd stable isotopes’ comprising five number of stable isotopes. For 
example, if Z = 50, its corresponding estimated stable mass number range 
is 118 ±2 . It means, stable mass numbers can be (116, 117, 118, 119, 
120)

2) For odd proton numbers, estimated range can be considered as ‘odd stable 
isotopes’ comprising only three isotopes. For example, if Z = 49, its 
corresponding estimated stable mass number range is 115 ±2 . It means, 
stable mass numbers can be (113, 115, 117).

Table 3: To fit and estimate medium, heavy and super heavy atomic nuclides.

Proton 
number

Estimated Binding 
energy (MeV) at 
stability zone

Estimated stable mass 
number with even-odd 
correction

Actual (stable and 
long living) isotopes

21 391.8 45 ±2 45

25 472.3 53 ±2 55

31 592.8 69 ±2 69,71

35 673.1 79 ±2 79,81

41 793.3 93 ±2 93

47 913.5 109 ±2 107,109

51 993.5 119 ±2 121,123

55 1073.5 131 ±2 133

59 1153.4 141 ±2 141

60 1173.4 144 ±2
142,144, 46, 

143,145, 148,150

65 1273.3 159 ±2 159

69 1353.2 169 ±2 169

75 1473.0 187 ±2 187,185
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81 1592.7 205 ±2 205,203

86 1692.4 220 ±2 222

92 1812.1 238 ±2 238, 235

100 1971.6 262 ±2 257

106 2091.1 282 ±2 272

111 2190.7 297 ±2 283

117 2310.3 317 ±2 294

118 2330.2 320 ±2 294

119 2350.1 323 ±2

120 2370.0 328 ±2

11. MASS AND RADIUS OF A NEUTRON STAR 

A) Mass of neutron star

According to G. Srinivasan [14]: “Till this question is resolved all one can say 
is that the maximum mass of neutron stars is somewhere in the range (1.5 to 
6.0) solar masses. It seems to us that the best one can do at present is to appeal 
to observation”. 
Let (M

NS
, m

n
) represent masses of neutron star and neutron respectively.

 G M m
c

G
G

N NS n s

N

≈   (45)

→ ≈










≈M G
G

c
G mNS

s

N N n



3 17.  Solar mass

Alternatively, it is also noticed that, 

  G M
c

G
G

N NS s

N

2 2



≈










 (46)
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 → ≈
⇒ ≈
G M G M
M
N NS s pl

NS 5 46.  Solar mass
 

Interesting point to be noted is that, 

 (47)

From astro-particle physics point of view, it can be given some consideration. 

B) Radius of neutron star

It may be noted that, observed masses of neutron stars are of the order of 2 
Solar masses and radii are of the order of 11 km [15]. In this context, important 
point to be noted is that, ratio of neutron star radius and neutron’s characteristic 
radius is of the order of G Gs N . It is also possible to say that, ratio of neutron 
star radius and Planck size is of the order of G Gs N( ) . It can be expressed in 
the following way. 

 R

G c

G
G

NS

N

s

N


3( )
≈  (48)

 → ≈










≈ ≈R G
G

G
c

G
G

G
cNS

s

N

N s

N

s 

3 3
8 1.  km  (49)

where G
c
s

3
0 361≅ .  fm  can be called as the nuclear Planck length. This can 

be compared with neutron’s positively charged core of radius ~0.3 fm. Now 
the above relation (49) can be re-expressed in the following way. 

 Radius of neutron star
Nuclear Planck length

≈
( )

≈
R

G c

G
G

NS

s

s



3
NN

 (50)

From astro-particle physics point of view, this concept can also be given some 
consideration. 

M

G c

G
G

 NS

N

s

N


3( )
≈  
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12. ‘SYSTEM OF UNITS’ INDEPENDENT AVOGADRO NUMBER 
AND MOLAR MASS UNIT 

If, atoms as a whole believed to exhibit electromagnetic interaction, then 
molar mass constant and Avogadro number, both can be understood with the 
following simple relation.

 G m G Me atom N mole( ) ≅ ( )2 2  (51)

where m
atom

 is the unified atomic mass unit and M
mole

 is the molar mass unit or 
gram mole. 

Thus it is very clear to say that, directly and indirectly ‘gravity’ plays a key 
role in understanding the molar mass unit.

 M
m

G
G

M G
G

mmole

atom

e

N
mole

e

N
atom≅ → ≅ ×  (52)

where  and <  0  kgG
G

Me

N
mole≅ × >( )5 96 10 0 00099 00123. . .  

Based on these relations, “independent of system of units” and “independent 
of ad-hoc selection of exactly one gram”, it may be possible to explore the 
correct physical meaning of the famous ‘Molar mass unit’ and ‘Avogadro 
number’ in a unified approach [7]. 

13. TO FIT AND UNDERSTAND THE ATOMIC RADII

Considering the geometric mean of the two assumed gravitational constants 
associated with proton and ‘atom as whole’, atomic radii can be fitted in the 
following way. By following the periodic arrangement of atoms and their 
electronic arrangement, accuracy can be improved. 

 
R A G m

c
G m
c

A

atom s
s n e atom

s

≅















≅ ∗

1 3
2 2

1 3

2 2

33.0 ppico.meter
 (53)

where A
S
 is the stable atomic mass number of the atom, m

n
 is the average mass 

of nucleon and m
atom

 is the unified atomic mass unit. Note that, this relation 
resembles the famous relation for nuclear radii proposed by Rutherford 
[16, 17]. See the following table-4.
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14. TO FIT AND UNDERSTAND THE BOHR RADIUS

With reference to relation (23), 
R G m

c
s p0

22







 ≅









  and by considering 

1

2 2n








as the probability of finding electron in its orbits labelled as n = 1,2,3,., total 
energy of electron can be understood with the following relation.

 

E
n

e
G m

e
G m ctot n

e e s p

( ) ≅ -

















1

2 4 42

2

0
2

2

0
πε πε / 22

2

2

0
2

1

4

( )












≅ -















n

e
G m

e

e eπε

22

0
24 2πε G m cs p /( )












 (54)

Table 4: Estimated atomic radii.

Proton 
number Stable Mass 

number
Estimated atomic 
radii (pico meter)

Reference data 
[18] (pico meter)

1 1 33.0 31
6 12 75.6 76
16 32 104.8 105
27 57 127.0 126
28 62 130.6 124
29 63 131.3 132
30 66 133.4 122
40 90 147.9 175
47 107 156.7 145
60 142 172.2 201
70 172 183.5 187
81 203 193.9 145
89 227 201.3 215
92 238 204.5 196

-



























1

4 42

2

0
2

2

0 0n
e
G m

e
Re eπε πε
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Here interesting point to be noted is that, e
G me e

2

0
2

5

4
1 171 10

πε











≅ × -.  can be 

considered as the electromagnetic and gravitational force ratio pertaining to 
electron where the operating gravitational constant is G

e
 

Discrete Bohr radii of electron can be understood with:

 a n G m
e

G m
cn

e e s p
0

2 0
2

2 2

4( ) ≅



















πε  (55)

Bohr radius can be understood with:

 

a G m
e

G m
c

G m
e

e e s p

e e

0
0

2

2 2

0
2

4

4

≅



















≅

πε

πε   
22

0

2


















R  (56)

16. DISCUSSION AND CONCLUSION

By introducing two pseudo gravitational constants, we make an attempt to 
combine the old ‘strong gravity’ concept with ‘Newtonian gravity’ and try to 
understand and re-interpret the constructional features of nuclei, atoms, and 
neutron stars in a unified approach and finally making an attempt to estimate 
the Newtonian gravitational constant from the known elementary atomic and 
nuclear physical constants. 

In an advanced and in a semi empirical approach, we proposed peculiar 
relations (1) to (56). Considering the wide applicable range of the proposed two 
assumptions, we are confident to say that, with further research and analysis, 
‘hidden and left over physics’ can easily be explored. In this context, we would 
also like to stress the fact that, with current understanding of String theory [19] 
or Quantum gravity [20], qualitatively or quantitatively, one cannot implement 
the Newtonian gravitational constant in microscopic physics. This ‘drawback’ 
can be considered as a characteristic ‘inadequacy’ of modern unification 
paradigm. Proceeding further, with reference to String theory models and 
Quantum gravity models, proposed two pseudo gravitational constants 
and presented semi empirical relations can be given some consideration in 
developing a ‘workable model’ of ‘final unification’. 
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