NaI(Tl) Scintillator's Response Functions for Point-like and Distributed Gamma-ray Sources

Authors

  • H. R. Vega-Carrillo Unidad Academica de Estudios Nucleares de la Universidad Autonoma de Zacatecas C. Cipres 10, Fracc. La Peñuela. 98068 Zacatecas, Zac. Mexico
  • J. L. Benites-Rengifo Centro Estatal de Cancerologia de Nayarit Calzada de la Cruz 118 Sur, Tepic, Nay. Mexico
  • V. M. Hernandez-Davila Unidad Academica de Estudios Nucleares de la Universidad Autonoma de Zacatecas C. Cipres 10, Fracc. La Peñuela. 98068 Zacatecas, Zac. Mexico.
  • J. M. Ortiz-Rotriguez Unidad Academica de Ingenieria Electrica de la Universidad Autonoma de Zacatecas Av. Ramon Lopez Velarde 801. Col. Centro, 98000 Zacatecas, Zac. Mexico
  • H. A. De Leon-Martinez Instituto Tecnológico de Aguascalientes Av. Adolfo López Mateos 1801 Ote. Fracc. Bona Gens, 20155 Aguascalientes, Ags. Mexico

DOI:

https://doi.org/10.15415/jnp.2016.41013

Keywords:

Gamma- ray, Point-like source, Distributed source, NaI(Tl) response, Monte Carlo

Abstract

The response functions of a NaI(Tl) detectors have been estimated using Monte Carlo methods. Response functions were calculated for monoenergetic photon sources (0.05 to 3 MeV). Responses were calculated for point-like sources and for sources distributed in Portland cement cylinders. Calculated responses were used to estimate the detector efficiency for point-like and distributed sources. Samples of cylindrical Portland cement were prepared and exposed to the photoneutron field produced by a 15 MV linac used for radiotherapy. Short half-life radioisotopes were induced and the activity was determined by measuring the pulse-height spectra with a NaI(Tl) g-ray spectrometer that was calibrated using point-like sources. Instead of doing corrections due to differences between the geometry, material and solid angle of point-like sources used for calibration, and the Portland cement cylinders, the detection efficiency was determined using the ratio between the efficiencies for the point-like and the distributed sources estimated with the Monte Carlo calculations, and the activity of the induced isotopes in cement was obtained.

Downloads

Download data is not yet available.

References

Benites-Rengifo, J. L. Spectra and neutron doses produced in a Varian iX linear accelerator, Ph.D. thesis (in Spanish), Universidad Autonoma de Nayarit, (2013).

Benites-Rengifo, J. L., Vega-Carrillo, H. R. & Velazquez-Fernandez, J. Photoneutron spectrum measured with a Bonner sphere spectrometer in planetary method mode. Applied Radiation and Isotopes 83(Part C), 256–259 (2014). http://dx.doi.org/10.1016/j.apradiso.2013.04.001

Conway, J.T. Geometric efficiency for a parallel-surface a detector system with at least one axisymmetric surface. Nuclear Instruments and Methods in Physics Research A, 583(2-3), 382–393 (2005). http://dx.doi.org/10.1016/j.nima.2007.09.051

Do-Kun, Y., Joo-Young, J., Seong-Min, H. & Tae Suk, S. Statistical analysis for discrimination of prompt gamma ray peak induced by high energy neutron: Monte Carlo simulation study. Journal of Radioanalytical and Nuclear Chemistry, 303(1), 859 – 866 (2015). http://dx.doi.org/10.1007/s10967-014-3572-5

Gilmore, G. Practical Gamma-ray Spectrometry. Sussex. Wiley, (2008). http://dx.doi.org/10.1002/9780470861981

Hadizadeh Yazdi, M. H., Mowlavi, A.A., Thompson, M. N. & Miri Hakimabad, H. Proper shielding for NaI(Tl) detectors in combined neutron-g fields using MCNP. Nuclear Instruments and Methods in Physics Research A, 522(3), 447454 (2004). http://dx.doi.org/10.1016/j.nima.2003.12.031

Kirby, R. K. & Kanare, H. M. National Bureau of Standards. Publication 260-110 (1998).

Konefal, A., Orlef, A., Laciak, M., Ciba, A. & Szewczuk, M. Thermal and resonance neutrons generated by various electron and X-ray therapeutic beams from medical linacs installed in polish oncological centers. Reports of Practical Oncology and Radiotherapy, 17(6), 339–346 (2012). http://dx.doi.org/10.1016/j.rpor.2012.06.004

McConn Jr., R. J., Gesh, C. J., Pagh, R. T., Rucker, R. A. & Williams III, R. G. Pacific Northwest National Laboratory, PNNL-15870 Rev. 1., (2011).

Mohammadi, N., Hakimabad, H. M. & Motavalli, L. R. Neural network unfolding spectrum measured by gold foil-based Bonner sphere. Journal of Radioanalytical and Nuclear Chemistry, 303(1), 1687 – 1693 (2015).

Pohorecki, W., Jodlowski, P., Pytel, K. & Prokopowicz, R. Measurement and calculation of long-lived radionuclide activity forming in the fast neutron field in some ITER construction steels. Fusion Engineering Design, 89(7-8), 932–936 (2014). http://dx.doi.org/10.1016/j.fusengdes.2014.04.074

Polaczek-Grelik, K., Karaczyn, K. & Konefal, A. Nuclear reactions in linear medical accelerators and their exposure consequences. Applied Radiation and Isotopes, 70(10), 2332-2339 (2012). http://dx.doi.org/10.1016/j.apradiso.2012.06.021

Polaczek-Grelik, K., Orlef, A., Dybek, M., Konefal, A. & Zipper, W. Linear accelerator therapeutic dose-induced radioactivity dependence. Applied Radiation and Isotopes 68(4-5), 763-766 (2010). http://dx.doi.org/10.1016/j.apradiso.2009.09.051

Salgado, C. M., Brandao, L. E. B., Schirru, R., Pereira, C. M. N.A. & Conti, C. C. Validation of a NaI(Tl) detector´s model developed with MCNP-X code. Progress in Nuclear Energy 59, 19–25 (2012). http://dx.doi.org/10.1016/j.pnucene.2012.03.006

Sharma, A., Singh, K., Singh, B. & Sandhu, B. S. Experimental response function of NaI(Tl) scintillation detector for gamma photons and tomographic measurements for defect detection. Nuclear Instruments and Methods in Physics Research B, 269(3), 247-256 (2011). http://dx.doi.org/10.1016/j.nimb.2010.09.004

Vega-Carrillo, H. R. & Rivera-Perez, E. Moderator for neutron activation with the photoneutrons produced by a LINAC. Journal of Radioanalytical and Nuclear Chemistry, 299(3), 1499-1507 (2014). http://dx.doi.org/10.1007/s10967-013-2868-1

Vega-Carrillo, H. R. Erratum to “Geometrical efficiency for a parallel disk source and detector” [Nucl. Instr. And Meth. A 371 (1996) 535-537]. Nuclear Instruments and Methods in Physics Research A, 538(1-3), 814 (2005). http://dx.doi.org/10.1016/j.nima.2004.11.014

Vega-Carrillo, H. R. Geometrical efficiency for a parallel disk source and detector. Nuclear Instruments and Methods in Physics Research A, 371(3), 535– 537 (1996). http://dx.doi.org/10.1016/0168-9002(95)00998-1

X-5 Monte Carlo Team, Los Alamos National Laboratory Report LA-CP-03-0245, (2003).

Downloads

Published

2016-08-08

How to Cite

(1)
Vega-Carrillo, H. R.; Benites-Rengifo, J. L.; Hernandez-Davila, V. M.; Ortiz-Rotriguez, J. M. .; De Leon-Martinez, H. A. . NaI(Tl) Scintillator’s Response Functions for Point-Like and Distributed Gamma-Ray Sources. J. Nucl. Phy. Mat. Sci. Rad. A. 2016, 4, 129-137.

Issue

Section

Articles