Analysis of the Lepton Mixing Matrix in the Two Higgs Doublet Model

  • E. Barradas-Guevara Fac. de Cs. Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 1152, Puebla, Pue. 72000, México.
  • O. Felix Beltran Fac. de Cs. de la Electrónica, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 542, Puebla, Pue. 72000, México.
  • F. Gonzalez Canales Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, 07000 México D.F., México.
  • E. Gonzalez Hernandez Fac. de Cs. Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 1152, Puebla, Pue. 72000, México.
  • E. Rodriguez Jauregui Fac. de Cs. Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 1152, Puebla, Pue. 72000, México.
  • M. Zeleny Mora Fac. de Cs. Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 1152, Puebla, Pue. 72000, México.
Keywords: Neutrinos, Seesaw, PMNS matrix, 2HDM-III

Abstract

In the theoretical framework of Two Higgs Doublet Model (2HDM) plus three right-handed neutrinos we consider a universal treatment for the mass matrices, aside from that the active neutrinos acquire their small mass through the type-I seesaw mechanism. Then, as long as a matrix with four-zero texture is used to represent the right-handed neutrinos and Yukawa matrices, we obtain a unified treatment where all fermion mass matrices have four-zero texture. We obtain analytical and explicit expressions for the lepton flavour mixing matrix PMNS in terms of fermion masses and parameters associated with the 2HDM-III. Further, we compare these expressions of the PMNS matrix with the most up to date values of masses and mixing in the lepton sector, via a likelihood test. We find that the analytical expressions that we derived reproduce remarkably well the most recent experimental data of neutrino oscillations.

Downloads

Download data is not yet available.

References

Abe, Y., et al. (Double Chooz), Improved measurements of the neutrino mixing angle θ13 with the Double Chooz detector. JHEP, 10, 086 (2014) [Erratum: JHEP02,074 (2015)].

Ade, P. A. R., et al. (Planck), Planck 2015 results. XIII. Cosmological parameters. arXiv:1502.01589 [astro-ph.CO] (2015).

An, F. P., et al. (Daya Bay), Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay. Phys. Rev. Lett., 116, 061801 (2015). http://dx.doi.org/10.1103/PhysRevLett.116.061801

Atwood, D., Reina, L., and Soni, A., Phenomenology of two Higgs doublet models with flavor changing neutral currents. Phys. Rev. D, 55, 3156–3176 (1997). http://dx.doi.org/10.1103/PhysRevD.55.3156

Capozzi et al., Neutrino masses and mixings: Status of known and unknown 3ν parameters. arXiv:1601.07777 [hep-ph] (2016).

Choi, J. H., et al. (RENO), Observation of Energy and Baseline Dependent Reactor Antineutrino Disappearance in the RENO Experiment. arXiv:1511.05849 [hepex] (2015).

Deppisch, F. F., Lepton Flavour Violation and Flavour Symmetries. Fortsch. Phys., 61, 622–644 (2013). http://dx.doi.org/10.1002/prop.201200126

Dorsner, I., and Barr S. M., Flavor exchange effects in models with Abelian flavor symmetry. Phys. Rev. D, 65, 095004 (2002). http://dx.doi.org/10.1103/PhysRevD.65.095004

Felix-Beltran, et al., Analysis of the quark sector in the 2HDM with a four-zero Yukawa texture using the most recent data on the CKM matrix. Phys. Lett. B, 742, 347–352 (2015). http://dx.doi.org/10.1016/j.physletb.2015.02.003

Forero, D., Tortola, M., and Valle, J., Neutrino oscillations refitted. Phys. Rev. D, 90, 093006 (2014). http://dx.doi.org/10.1103/PhysRevD.90.093006

Fritzsch, H., and Zhong Xing, Z., Mass and flavor mixing schemes of quarks and leptons. Prog. Part. Nucl. Phys., 45, 1–81 (2000). http://dx.doi.org/10.1016/S0146-6410(00)00102-2

Gando, A., et al. (KamLAND), Constraints on θ13 from A Three-Flavor Oscillation Analysis of Reactor Antineutrinos at KamLAND. Phys. Rev. D, 83, 052002 (2011). http://dx.doi.org/10.1103/PhysRevD.83.052002

Gando, A., et al. (KamLAND), Reactor On-Off Antineutrino Measurement with KamLAND. Phys. Rev. D, 88, 033001 (2013). http://dx.doi.org/10.1103/PhysrevD.88.033001

Krawczyk, M., and Sokolowska, D., 2007 International Linear Collider Workshop (LCWS07 and ILC07) Hamburg, Germany, May 30-June 3, 2007, eConf C0705302, p. HIG09 (2007), [141(2007)].

Krawczyk, M., Proceedings, 2005 Europhysics Conference on High Energy Physics (EPS-HEP 2005). PoS HEP2005, 335 (2006).

Olive, K. A., et al. (Particle Data Group). Chin. Phys. C, 38, 090001 (2014). http://dx.doi.org/10.1088/1674-1137/38/9/090001

Rodejohann, W., and Valle, J. W. F., Symmetrical Parametrizations of the Lepton Mixing Matrix. Phys. Rev. D, 84, 073011 (2011). http://dx.doi.org/10.1103/PhysRevD.84.073011

Schechter, J., and Valle, J. W. F., Neutrino Masses in SU(2) × U(1) Theories. Phys. Rev. D, 22, 2227 (1980). http://dx.doi.org/10.1103/PhysRevD.22.2227

Seo, S.-H., (RENO), Proceedings, 26th International Conference on Neutrino Physics and Astrophysics (Neutrino 2014), AIP Conf. Proc. 1666, 080002 (2015).

Published
2016-08-08
How to Cite
E. Barradas-Guevara, O. Felix Beltran, F. Gonzalez Canales, E. Gonzalez Hernandez, E. Rodriguez Jauregui, & M. Zeleny Mora. (2016). Analysis of the Lepton Mixing Matrix in the Two Higgs Doublet Model . Journal of Nuclear Physics, Material Sciences, Radiation and Applications, 4(1), 203-219. https://doi.org/10.15415/jnp.2016.41021
Section
Articles