Nanocomposites for Decontamination of Multicomponent Technogenic Dilutions

Authors

  • V. Kadoshnikov Institute of Environmental Geochemistry under Natl. Acad. Sci. and Ministry for Emergencies and Affairs of Population Protection from the Consequences of Chornobyl Catastrophe, 34-a Acad. Palladin Ave., UA-03680, Kyiv, Ukraine
  • Yu. Lytvynenko Institute of Environmental Geochemistry under Natl. Acad. Sci. and Ministry for Emergencies and Affairs of Population Protection from the Consequences of Chornobyl Catastrophe, 34-a Acad. Palladin Ave., UA-03680, Kyiv, Ukraine
  • Yu. Zabulonov Institute of Environmental Geochemistry under Natl. Acad. Sci. and Ministry for Emergencies and Affairs of Population Protection from the Consequences of Chornobyl Catastrophe, 34-a Acad. Palladin Ave., UA-03680, Kyiv, Ukraine
  • V. Krasnoholovets Institute of Physics, Natl. Acad. Sci., Prospect Nauky 46, UA-03028 Kyiv, Ukraine

DOI:

https://doi.org/10.15415/jnp.2016.32025

Keywords:

decontamination, technological solutions, nanocomposite, sorbent, heavy metals, radionuclides, polluted water, heterocoagulation, vitrification

Abstract

Employing model solutions we have tested a new technological method of neutralization of multi-metal containing effluences including low radioactive ones. The proposed approach seamlessly combines the positive properties of both physical chemical methods and nanotechnology using silica-magnetite nanocomposite SiO2/Fe3O4 that is synthesized directly in the man-caused polluted solution (the so-called method of direct sedimentation). The novelty of the method is the absorption of pollutants by the whole volume of synthesized nanoparticles in addition to the absorption of the particles’ surface. After separation of the solid and liquid phases, about 75% Cs, 93% Sr, 97% Cu and 99% Fe+2/ Fe+3 pass from the dispersion medium into a solid phase per one loop. The obtained SiO2/Fe3O4 nanocomposite heated to 1000 °C forms a small size glass phase, which is a reliable matrix for the long-term retention of radionuclides incorporated in the composite’s volume. Thus the approach will allow one to reduce the collected radioactive isotopes to a tiny volume, which means the decrease of land and funds needed to burial radioactive waste.

Downloads

Download data is not yet available.

References

A. Kadous, M. A. Didi and D. Villemin, J. Radioanalyt. Nucl. Chem. 288 (2011) 553-561. http://dx.doi.org/10.1007/s10967-010-0970-1

J. Braun and T. Barker, Nuclear Plant J., January-February (2012) pp. 36-37.

J. Sun, Y. Zhang, Z. Chen, J. Zhou and N. Gu, Angewandte Chem. Int. Edition 46 (2007), 4767–4770. http://dx.doi.org/10.1002/anie.200604474

Figure

G. Patzay, L. Weiser, F. Feil, G. Patek and J. Schunk, Nuclear & Renewable Energy Conference (INREC),1st International, 21-24 March 2010, 3 pages (2010) IEEE Xplore Digital Library.

L. M. Camacho, S. Deng and R. R. Parra, J. Hazard. Mater. 175 (2010) 393-398. http://dx.doi.org/10.1016/j.jhazmat.2009.10.017 PMid:19892465

M. Galamboš, P. Suchánek and O. Rosskopfova, J. Radioanalyt. Nucl. Chem. 293 (2012) 613-633. http://dx.doi.org/10.1007/s10967-012-1717-y

M. Lee and M. Yang, J. Hazard. Mater. 173 (2010) 589-596. http://dx.doi.org/10.1016/j.jhazmat.2009.08.127 PMid:19783370

N.-E. Belkhouche, M. A. Didi and D. Villemin, Solvent Extraction and Ion Exchange, 23 (2005) 677-693. http://dx.doi.org/10.1081/SEI-200066290

N. Kumari, P. Pathak, D. Prabhu and V. Manchanda, J. Hazard. Tox. Radioact. Waste, 16 (2012), 327-333. http://dx.doi.org/10.1061/(ASCE)HZ.2153-5515.0000136

P. Govindan et al., Journal of Radioanalytical and Nuclear Chemistry 295 (2013) 307-313. http://dx.doi.org/10.1007/s10967-012-1831-x

P. Kovařík, J. D. Navratil and J. John, Science and Technology of Nuclear Installations, Vol. 2015, Article ID 407842, 10 pages.

R. K. Iler, The chemistry of silica: Solubility, polymerization, colloid and surface properties and biochemisry of silica, John Wiley and Sons, Chichester (1979).

R. O. Abdel Rahman, H. A. Ibrahium Y.-T. and Hung, Water 3 (2011) 551-565. http://dx.doi.org/10.3390/w3020551

S. Chitra et al., J. Radioanalyt. Nucl. Chem. 295 (2013) 607-613. http://dx.doi.org/10.1007/s10967-012-1812-0

S. S. Voyutskiy The course of colloid chemistry, Khimia, Moscow (1975), p. 512 (in Muscovian).

V. Valdovinos, F. Monroy-Guzman and E. Bustos, Ed.: M. C. Hernandez-Soriano, InTech, Chapters published March 26, 2014 under CC BY 3.0 license, Open Access Book (2014) Ch. 14, http://cdn.intechopen.com/pdfs-wm/46254.pdf; doi: 10.5772/57086INTECH

W. W. Werdlandt, Thermal methods of analysis, Mir, Moscow (1978) (Muscovian translation).

W. Zou, H. Bai, L. Zhao and K. L. R. Han, J. Radioanalyt. Nucl. Chem. 288 (2011) 779-788. http://dx.doi.org/10.1007/s10967-010-0904-y

Yu. Zabulonov, V. Kadoshnikov and Yu. Lytvynenko, Patent of Ukraine No. 77123 (2012).

Yu. Zabulonov, Yu. Lytvynenko, V. Kadoshniko and S. Kuzenko, Anthropogenic and environmental safety and civil protection, Kyiv – Kremenchuk (2011), 3, p. 201 (in Ukrainian).

Yu. Zabulonov, Yu. Lytvynenko, V. Kadoshnikov and I. R. Pysanska, Collection of scientific works “Modeling and the information technologies”, Kyiv: Institute for Simulation and Information Technology, Natl. Acad. Sci. of Ukraine, 59 (2011) 116-125.

Downloads

Published

2016-02-08

How to Cite

(1)
Kadoshnikov, V. .; Lytvynenko, Y. .; Zabulonov, Y. .; Krasnoholovets, V. . Nanocomposites for Decontamination of Multicomponent Technogenic Dilutions. J. Nucl. Phy. Mat. Sci. Rad. A. 2016, 3, 279-292.

Issue

Section

Articles