Synthesis and Crystallization Studies of Thermo-plastic Polyster/Titania Nanocomposites

  • Harshita Agrawal Department of Physics, Banasthali University, Banasthali-304022, Tonk, India
  • Shalini Agarwal Department of Physics, Banasthali University, Banasthali-304022, Tonk, India
  • Yogendra K. Saraswat Department of Chemistry, SV (PG) College, Aligarh, UP, India
  • Kamlendra Awasthi Department of Physics, MNIT, Jaipur-302018, India
  • Vibhav K. Saraswat Department of Physics, Banasthali University, Banasthali-304022, Tonk, India
Keywords: XRD, DSC, crystallization temperature, polymer nanocomposites

Abstract

The present work reports the non-isothermal crystallization kinetics of PET-TiO2 nanocomposites. The average particle size of TiO2 nanoparticles, prepared by chemical route, has been calculated 32 nm using Debay-Scherrer’s formula in XRD peaks. PET-TiO2 nanocomposites have been synthesized using solution casting method. The investigation of non-isothermal crystallization behavior has been conducted by means of Differential Scanning Calorimeter (DSC). The crystallization temperature shift to lower temperature for both PET pristine and PET-TiO2 nanocomposites due to decrease in mobility of chain segments and heterogeneous nucleation. Also, the inclusion of TiO2 nanoparticles may accelerate nucleation rate in nanocomposites that causes the crystallization time and absolute crystallinity fraction. The thermal conductivity of inorganic filler TiO2 nanoparticles may affect the crystallization temperature.

Downloads

Download data is not yet available.

References

L. V. Todorov, and J. C. Viana, Journal of Applied Polymer Science, 106, 1659–1669 (2007). http://dx.doi.org/10.1002/app.26716

J. C. Viana, N. M. Alves, and J. F. Mano, Polym Eng Sci, 44, 2174 (2004). http://dx.doi.org/10.1002/pen.20149

L. V. Todorov, Multiscale morphology evolution of PET and its nanocomposites under deformation, (Ph.D. thesis), Unversidade do Minho Escola de Engenharia (2010).

S. K. Lim, S. H. Hong, S.H. Hwang, S. Kim, J. S. Han, and O. K. Kwon, Textile Research Journal 0, (00) 1–9.

X. Zhu, B. Wang, S. Chen, C. Wang, Y. Zhang, and H. Wang, Journal of Macromolecular Science R, Part B: Physics, 47, 1117–1129 (2008).

P. H. Borse, L. S. Kankate, F. Dassenoy, W. Vogel, J. Urban and S. K. Kulkarni, Journal of material science: Materials in electronics 13, 553-559 (2002). http://dx.doi.org/10.1023/A:1019677730981

S. Talam, S. R. Karumuri, and N. Gunnam, International Scholarly Research Network, ISRN Nanotechnology, Article ID 372505, Volume 2012.

S. H. Kim, S. H. Ahn, and T. Hirai, Polymer, 44, 5625-5634 (2003). http://dx.doi.org/10.1016/S0032-3861(03)00580-9

Published
2014-02-24
How to Cite
Harshita Agrawal, Shalini Agarwal, Yogendra K. Saraswat, Kamlendra Awasthi, & Vibhav K. Saraswat. (2014). Synthesis and Crystallization Studies of Thermo-plastic Polyster/Titania Nanocomposites . Journal of Nuclear Physics, Material Sciences, Radiation and Applications, 1(2), 207-211. https://doi.org/10.15415/jnp.2014.12016
Section
Articles