Goodness of Generalized Seniority in Even-even Sn Isotopes

  • Bhoomika Maheshwari Department of Physics, Banasthali Vidyapith, Banasthali-304022, India.
Keywords: Sn isotopes, Seniority, Generalized Seniority, Isomers, B(E1), B(E2), B(E3), First excited 2 and 3- states

Abstract

Seniority has proved to be a unique and simple probe to address some of the complex issues underlying nuclear structure of nuclei close to magic numbers. An extension from the concept of seniority in single-j shell to generalized seniority in multi-j shell has recently been provided by us. We have, consequently, established new selection rules for gamma decays and discovered the new seniority isomers decaying via odd electric multipole operators. We have successfully explained the B(EL; L=1,2,3) behavior of various high spin isomers and other excited states. More specifically, we have been able to explain the long-standing puzzle of double hump in the B(E2) values for the first excited 2+ states of even-even Z=50 (Sn) isotopes. In the present paper, we review these generalized seniority calculations with emphasis on even-even Sn isotopes. We first discuss the generalized seniority results for the E1 decaying 13- isomers and E2 decaying 10+, 15- isomers, and then present the cases of first-excited 2+ and 3- states. The generalized seniority proves out to be a reasonably good quantum number. The significance of configuration mixing is found to be true. The calculated results has been validated till high seniority v=4 states and expected to be valid for higher seniority v=6,… states also.

References

[1] G. Racah, Physical Review, 63, 367 (1943). https:// doi.org/10.1103/PhysRev.63.367
[2] G. Racah, L. Farkas Memorial Volume, 294 (1952).
[3] B. H. Flowers, Proceedings of the Royal Society (London) A, 212, 248 (1952). https://doi. org/10.1098/rspa.1952.0079.
[4] A. K. Kerman, Annals of Physics (NY), 12, 300 (1961). https://doi.org/10.1016/00034916(61)90008-2.
[5] K. Helmers, Nuclear Physics., 23, 594 (1961). https://doi.org/10.1016/0029-5582(61)90285-1.
[6] I. Talmi (1993), Simple Models of Complex Nuclei, Harwood Academic.
[7] R. F. Casten (1990), Oxford University Press.
[8] D. J. Rowe, and J. L. Wood (2010), World Scientific Publishing, Singapore. https://doi. org/10.1142/6209.
[9] I. Talmi, Advances in Nuclear Physics, 27, 1 (2003), and the references therein. https://doi. org/10.1007/0-306-47916-8_1.
[10] A. Arima and M. Ichimura, Progress of Theoretical Physics, 36, 296 (1966). https://doi.org/10.1143/ PTP.36.296.
[11] I. Talmi, Nuclear Physics A, 172, 1 (1971). https:// doi.org/10.1016/0375-9474(71)90112-6.
[12] S. Shlomo, and I. Talmi, Nuclear Physics A, 198, 82 (1972). https://doi.org/10.1016/03759474(72)90773-7.
[13] R. Arvieu, and S. A. Moszokowski, Physical Review, 145, 830 (1966). https://doi.org/10.1103/ PhysRev.145.830.
[14] I. M. Green, and S. A. Moszokowski, Physical Review, 139, B790 (1965). https://doi.org/ 10.1103/ PhysRev.139.B790.
[15] B. Maheshwari,and A. K. Jain, Physics Letters B, 753, 122 (2016). https://doi.org/10.1016/j.physletb.2015.11.079.
[16] B. Maheshwari, A. K. Jain, and B. Singh, Nuclear Physics A, 952, 62 (2016). https://doi. org/10.1016/j.nuclphysa.2016.04.021.
[17] A. K. Jain and B. Maheshwari, Nuclear Physics Review, 34, 73 (2017). https://doi. org/10.11804/NuclPhysRev.34.01.073.
[18] A. K. Jain and B. Maheshwari, Physica Scripta 92, 074004 (2017). https://doi.org/10.1088/14024896/aa7353.
[19] B. Maheshwari, S. Garg, and A. K. Jain, PramanaJournal of Physics (Rapid Comm.) 89, 75 (2017).
[20] R. Broda et al., Physical Review Letters, 68, 1671 (1992) and references therein. https://doi. org/10.1103/PhysRevLett.68.1671
[21] C. T. Zhang et al., Physical Review C, 62, 057305 (2000) and references therein.
[22] A. Astier et al ., Physical Review C, 85, 054316 (2012). https://doi.org/10.1103/PhysRevC.62.057305.
[23] L. W. Iskra et al ., Physical Review C, 89, 044324 (2014). https://doi.org/10.1103/PhysRevC.89.044324.
[24] Evaluated Nuclear Structure Data File: http:// www.nndc.bnl.gov/ensdf/
[25] I. O. Morales, P. Van Isacker, and I. Talmi, Physical Review B, 703, 606 (2011). https://doi. org/10.1016/j.physletb.2011.08.033.
[26] A. Ansari, Physical Review B, 623, 37 (2005). https://doi.org/10.1016/j.physletb.2005.07.031
[27] A. Ansari, and P. Ring, Physical Review C, 74, 054313 (2006). https://doi.org/10.1103/PhysRevC.74.054313.
[28] T. Back et al., Physical Review C, 87, 031306(R) (2013). https://doi.org/10.1103/PhysRevC.87.031306.
[29] N. Lo Iudice, Ch. Stoyanov, and D. Tarpanov, Physical Review C, 84, 044314 (2011).
[30] H. Jiang, Y. Lei, G. E. Fu, Y. M. Zhao, and A. Arima, Physical Review C, 86, 054304 (2012). https://doi.org/10.1103/PhysRevC.86.054304.
[31] A. Jungclaus et al., Physical Review B, 695, 110 (2011). https://doi.org/10.1016/j.physletb.2010.11.012.
[32] A. Ekstrom et al., Physical Review Letters, 101, 012502 (2008).https://doi.org/10.1103/PhysRevLett.101.012502.
[33] P. Doornenbal et al., Physical Review C, 90, 061302(R) (2014). https://doi.org/10.1103/PhysRevC.90.061302.
[34] D. C. Radford et al., Nuclear Physics A, 746, 83 (2004). https://doi.org/10.1016/j.nuclphysa.2004.09.056.
[35] J. M. Allmond et al., Physical Review C, 84,061303(R) (2011). https://doi.org/10.1103/ PhysRevC.84.061303.
[36] A. Banu et al., Physical Review C, 72, 061305(R) (2005). https://doi.org/10.1103/PhysRevC.72.061305.
[37] J. Cederkall et al., Physical Review Letters, 98, 172501 (2007). https://doi.org/10.1103/PhysRevLett.98.172501.
[38] C. Vaman et al., Physical Review Letters, 99, 162501 (2007).
[39] P. Doornenbal et al., Physical Review C, 78,031303(R) (2008). https://doi.org/10.1103/ PhysRevC.78.031303.
[40] R. Kumar et al., Physical Review C, 81, 024306 (2010). https://doi.org/10.1103/PhysRevC.81.024306.
[41] G. Guastalla et al., Physical Review Letters, 110, 172501 (2013). https://doi.org/10.1103/PhysRevLett.110.172501.
[42] V. M. Bader et al., Physical Review C, 88, 051301(R) (2013).https://doi.org/10.1103/PhysRevC.88.051301.
[43] J. M. Allmond et al., Physical Review C, 92, 041303(R) (2015). https://doi.org/10.1103/PhysRevC.92.041303
[44] N. Orce et al., Physical Review C, 76, 021302(R) (2007). https://doi.org/10.1103/PhysRevC.76.021302.
[45] B. Pritychenko, M. Birch, B. Singh, and M. Horoi, Atomic Data and Nucl. Data Tables, 107, 1 (2016). https://doi.org/10.1016/j.adt.2015.10.001
[46] W. Nazarewicz et al., Nuclear Physics A, 429,269(1984).https://doi.org/10.1016/03759474(84)90208-2.
[47] P. D. Cottle, Physical Review C, 42, 1264 (1990). https://doi.org/10.1103/PhysRevC.42.1264
[48] T. Kibedi, and R. H. Spear, Atomic Data and Nucl. Data Tables, 80, 35 (2002). https://doi.org/10.1006/ adnd.2001.0871.
Published
2019-02-26
How to Cite
Bhoomika Maheshwari (2019) “Goodness of Generalized Seniority in Even-even Sn Isotopes”, Journal of Nuclear Physics, Material Sciences, Radiation and Applications, 6(2), pp. 134-141. doi: 10.15415/jnp.2019.6.02.0134-141.
Section
Nuclear Structure

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.