Radon Progeny Recoil Effect in Retrospective Indoor Glass Dosimetry

  • C.D. Tibambre-Heredia Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
  • H. Olaya-Dávila Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
  • A.C. Sevilla Servicio Geológico Colombiano, Bogotá D.C, Colombia
  • R. Samasundaram Dipartimento di Fisicaed Astronomiadell' Università di Padova, ViaMarzolo 8, I-35131 Padova, Italy
  • J.A. Lopez Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, U.S.A.
  • S.A. Martinez-Ovalle Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia.
  • L. Sajo-Bohus Dipartimento di FisicaedAstronomiadell' Università di Padova, ViaMarzolo 8, I-35131 Padova, Italy; UniversidadSimonBolivar, Nuclear Laboratory Caracas, 1080A Venezuela
Keywords: radon progeny, retrospective dosimetry, GEANT4, diffusion in glass

Abstract

Radon gas diffusion and progeny transport in air, are mechanisms to be considered in retrospective glass dosimetry.   With the aim to contribute to the understanding of the Rn progeny recoil energy role in this dosimetry methodology, we carried out a simulation employing GEANT4 code. In that, we assumed the chemical compound of the glass that is used commonly in households.  Results are compared to experimentally measured 210Bi concentration to show that the recoil energy helps the progenies incrustation, mainly for the 218,214Po alpha emitters but do not influence bismuth-210 diffusion directly. A significant difference exists between our results and measured values; that is interpreted as due to atomic displacement by primary knock-on atoms. The SiO2 molecule binding energy breaks and the following ion recombination, induce a structural modification between the atom by e.g. cavities formation in such a way that reduces significantly the radon progeny diffusion speed.

Downloads

Download data is not yet available.

References

American Cancer Society, (2019). https://www.cancer.org/cancer/cancer-causes/radiation-exposure/radon.html.

J. Ekman et al., Nucl. Inst. Met. Phy. R. B 249, 544 (2006). https://doi.org/10.1016/j.nimb.2006.03.049

J. A. Mahaffey et al., Health Phys 64, 381, (1993). https://doi.org/10.1097/00004032-199304000-00005

J. Pálfalvi, I. Fehér and M. Lörinc, Rad. Meas. 25, 585 (1995). https://doi.org/10.1016/1350-4487(95)00189-l

R. Falk, H. Mellander, L. Nyblom and I. Östergren, Env. Int. 22 S1, 857 (1996). https://doi.org/10.1016/S0160-4120(96)00193-6

A.M. Sanchez, J. de la Torre Pérez and A.B. Sánchez Ruano, Appl. Rad. & Iso 126, 13 (2017). https://doi.org/10.1016/j.apradiso.2017.02.037

B. Roos, Ph.D. thesis, University of Lund, 2002.

R. S. Lively and E. P. Ney, Heath Phys 52, 411 (1987). https://doi.org/10.1097/00004032-198704000-00001

C. Samuelsson, Nature 334, 338 (1988). https://doi.org/10.1038/334338a0

M. C. Alavanja, J. H. Lubin, and R.C. Brownson, Ame. J. Pub. Hea. 89, 1042 (1999). https://doi.org/10.2105/ajph.89.7.1042

F. Lagarde et al, Exposure Scien and Environ Epidem 12, 344 (2002).https://doi.org/10.1038/sj.jea.7500236

P. F. Düffer, Glass Technical Document TD-106, PPG Glass technology, (2003).

A. Howard (2013). CERN’s collaborations,. http://www.apc.univ-paris7.fr/~franco/g4doxy/html/LBE_8icc-source.html

A. Fick, Poggendorffs Annalen 94, 59 (1855).

W. J. Choi et al., Scientific Reports 4, 1 (2014). https://doi.org/10.1038/srep05289

G. H. Kinchin and R.S. Pease, Rep. Prog. Phys. 18, 1 (1955). https://doi.org/10.1088/0034-4885/18/1/301

Published
2020-02-10
How to Cite
C.D. Tibambre-Heredia, H. Olaya-Dávila, A.C. Sevilla, R. Samasundaram, J.A. Lopez, S.A. Martinez-Ovalle, & L. Sajo-Bohus. (2020). Radon Progeny Recoil Effect in Retrospective Indoor Glass Dosimetry. Journal of Nuclear Physics, Material Sciences, Radiation and Applications, 7(1), 35-41. https://doi.org/10.15415/jnp.2019.71004
Section
Articles

Most read articles by the same author(s)