How do Uncertainties in Atomic Parameters Influence Theoretical Predictions of X-Ray Production Cross Sections By Proton Impact?

Authors

  • J. Miranda Institute of Physics, National Autonomous University of Mexico, Scientific Research Circuit S/N, Coyoacan-04510, Mexico

DOI:

https://doi.org/10.15415/jnp.2020.72007

Keywords:

Ionization, X-ray production, Protons, Fluorescence yield, Coster-Kronig, Uncertainties

Abstract

The emission of characteristic X-rays induced by proton impact is a phenomenon known since the first half of the 20th century. Its more widely known application is the analytical technique Particle Induced X-ray Emission (PIXE). Several models have been developed to calculate, first, ionization cross sections and then the subsequent X-ray production cross sections. However, to carry out the comparisons of these predictions with experimental data it is necessary to use atomic parameters databases (fluorescence yields, Coster-Kronig transition probabilities, emission rates) that also have experimental uncertainties. In this work it is demonstrated how these values do not allow to decide which model describes more accurately the cross sections, due to a final “theoretical uncertainty” obtained through the propagation of the original uncertainties.

Downloads

Download data is not yet available.

References

S. A. E. Johansson and J. L. Campbell, PIXE: A Novel Technique for Elemental Analysis (John Wiley, Chichester, 1988).

G. Lapicki, Nucl. Instrum. Meth. B 189, 8 (2002). https://doi.org/10.1016/S0168-583X(01)00987-9

H. Paul and J. Sacher, At. Data Nucl. Data Tables 42, 105(1989). https://doi.org/10.1016/0092-640X(89)90033-8

A. Kahoul, B. Deghfel, A. Abdellatif and M. Nekkab, Rad. Phys. Chem. 80, 1300 (2011). https://doi.org/10.1016/j.radphyschem.2011.06.016

J. Miranda and G. Lapicki, At. Data Nucl. Data Tables 100, 651(2014). https://doi.org/10.1016/j.adt.2013.07.003

J. Miranda and G. Lapicki, At. Data Nucl. Data Tables 118, 444 (2018).

L. C. Phinney, J. L. Duggan, G. Lapicki, F. U. Naab, K. Hossain, and F. D. McDaniel J. Phys. B 42, 085202 (2009). https://doi.org/10.1088/0953-4075/42/8/085202

E. Merzbacher and H.W. Lewis, Handbuch der Physik (Springer, Berlin, 1958) p.166.

J. H. McGuire and P. Richard, Phys. Rev. A 8, 1374 (1973). https://doi.org/10.1103/PhysRevA.8.1374

W. Brandt and G. Lapicki, Phys. Rev. A 23, 1717 (1981). https://doi.org/10.1103/PhysRevA.23.1717

C. C. Montanari, J. N. Miraglia and N. R. Arista, Phys. Rev. A 66, 042902 (2002). https://doi.org/10.1103/PhysRevA.66.042902

G. Schiwietz, K. Czerski, M. Roth, F. Staufenbiel, and P.L. Grande, Nucl. Instrum. Meth. B 225, 4 (2004). https://doi.org/10.1016/j.nimb.2004.05.041

L. Sarkadi and T. Mukoyama, Nucl. Instrum. Meth. B 61, 167(1991). https://doi.org/10.1016/0168-583X(91)95456-N

G. Lapicki and F. D. McDaniel, Phys. Rev. A 22, 1896 (1980). https://doi.org/10.1103/PhysRevA.22.1896

G. Lapicki, R. Mehta, J. L. Duggan, P. M. Kocur, J. L. Price, and F. D. McDaniel, Phys. Rev. A 34, 3813 (1986). https://doi.org/10.1103/PhysRevA.34.3813

J. L. Campbell, At. Data Nucl. Data Tables 85, 291 (2003). https://doi.org/10.1016/S0092-640X(03)00059-7

W. Maenhaut and K. G. Malmqvist, Handbook of X-Ray Spectrometry, edited by R. E. Van Grieken and A. A. Markowicz, p. 719 (Marcel Dekker, New York, 2002).

S. J. Cipolla, Comp. Phys. Comm. 182, 2439 (2011). https://doi.org/10.1016/j.cpc.2011.06.004

G. Lapicki, J. Phys. B 41, 115201 (2008). https://doi.org/10.1088/0953-4075/41/11/115201

M.O. Krause, J. Phys. Chem. Ref. Data 8, 307(1979). https://doi.org/10.1063/1.555594

A. Kahoul, V. Aylikci, N. KupAylikci, E. Cengiz, and G. Apaydin, Rad. Phys. Chem. 81, 713 (2012). https://doi.org/10.1016/j.radphyschem.2012.03.006

J.L. Campbell, At. Data Nucl. Data Tables 95, 115 (2009). https://doi.org/10.1016/j.adt.2008.08.002

V. Aylikci, A. Kahoul, N. KupAylikci, E. Tiraşoğlu, İ.H. Karahan, A. Abassi, M. Dogan, Rad. Phys. Chem. 106, 99 (2015). https://doi.org/10.1016/j.radphyschem.2014.06.030

J. L. Campbell and J.-X. Wang, At. Data Nucl. Data Tables 43, 281 (1989). https://doi.org/10.1016/0092-640X(89)90004-1

S. Puri, At. Data Nucl. Data Tables 93, 730 (2007). https://doi.org/10.1016/j.adt.2007.05.002

S.I. Salem, S.L. Panossian, and R.A. Krause, At. Data Nucl. Data Tables 14, 91 (1974). https://doi.org/10.1016/S0092-640X(74)80017-3

G. Lapicki, J. Phys. Chem. Ref. Data 18, 111 (1989). https://doi.org/10.1063/1.555838

D. Singh, H. R. Verma, P. S. Singh, and C. S. Khurana, Indian J. Phys. 66B, 281 (1992).

Y. C. Yu, E. K. Lin, C. W. Wang, P. J. Tsai, and W. C. Cheng, Chinese J. Phys. 32, 345 (1994).

S.J. Cipolla and C.J. Verzani, Nucl. Instrum. Meth. B 99, 18 (1995). https://doi.org/10.1016/0168-583X(95)00038-0

S. Ouziane, A. Amokrane, and M. Zilabdi, Nucl. Instrum. Meth. B 161, 141 (2001). https://doi.org/10.1016/S0168-583X(99)00916-7

S. Ouziane and A. Amokrane, Microchim. Acta 139, 131 (2002). https://doi.org/10.1007/s006040200051

B. H. Kusko, Ph.D. Thesis, University of California at Davis, 1983.

Downloads

Published

2020-02-28

How to Cite

(1)
Miranda, J. . How Do Uncertainties in Atomic Parameters Influence Theoretical Predictions of X-Ray Production Cross Sections By Proton Impact?. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 71-76.

Issue

Section

Articles

Similar Articles

You may also start an advanced similarity search for this article.