A Data Mining Perspective of XRF Elemental Analysis from Pueblo People’s Pottery

  • M. Castro-Colin Bruker AXS GmbH, Karlsruhe-76131, Germany
  • E. Ramirez-Homs Department of Physics, El Paso, TX-79912, USA
  • J. A. López Department of Physics, El Paso, TX-79912, USA
Keywords: X-ray fluorescence, Radiation, Spectrometry, Cluster Analysis, Data Mining, Archaeology, Provenance, Nondestructive testing analysis, xrf elemental analysis


Hierarchical clustering was used to identify elemental signatures in artifacts attributed to the Pueblo peoples. The artifacts in this study are pottery samples found at different sites in the state of New Mexico, USA. Three methods were applied: complete, average, and Ward. Their corresponding cophenetic correlation coefficients were used to contrast the three methods. Elemental characterization was only based on X-ray fluorescence excitation from a portable spectrometer with the silver anode. The elemental correlations here disclosed by data mining techniques are expected to guide further archaeological studies and assist experts in the assessment of provenance and historical ethnographic studies.

XRF elemental analysis


Download data is not yet available.


E. Ben-Yosef, et al., PNAS 114, 2160 (2009). https://doi.org/10.1073/pnas.1615797114 DOI: https://doi.org/10.1073/pnas.1615797114

E. Boaretto, et al., PNAS 16, 9595 (2017). https://doi.org/10.1073/pnas.0900539106 DOI: https://doi.org/10.1073/pnas.0900539106

G. Bronitsky., Adv. Archaeological Method and Theory 9, 209 (1986). https://doi.org/10.1016/B978-0-12-003109-2.50008-8 DOI: https://doi.org/10.1016/B978-0-12-003109-2.50008-8

A. Chudin, K. Ushanova, and E. Lähderanta., Mediterranean Archaeology and Archaeometry 19, 25 (2019). https://doi.org/10.5281/zenodo.2585948

J. Diamond. Collapse: how societies choose to fail or succeed. Ch. 4. pp. 145. Penguin Group, New York, USA (2005).

B. P. Dutton. “American Indians of the Southwest”. Ch. 2, pp. 9-62. U. of New Mexico Press, Albuquerque, USA (1983).

M. Holgersson., Pattern recognition 10, 287 (1978). https://doi.org/10.1016/0031-3203(78)90038-9 DOI: https://doi.org/10.1016/0031-3203(78)90038-9

A. Iordanidis, J. Garcia-Guinea and G. Karamitrou-Mentessidi., Mat. Characterization 60, 292 (2009). https://doi.org/10.1016/j.matchar.2008.08.001 DOI: https://doi.org/10.1016/j.matchar.2008.08.001

Y. Konomata, et al., Antiquity 93, 1 (2019). https://doi.org/10.15184/aqy.2019.56 DOI: https://doi.org/10.15184/aqy.2019.56

I. Kuleff and R. Djingova., Revue d’Archéométrie 20, 57 (1996). DOI: https://doi.org/10.3406/arsci.1996.937

I. Liritzis, N. Zacharias, I. Papageorgiou, A. Tsaroucha and E. Palamar., Studia Antiqua et Archaelogica 24, 31 (2018).

F. Murtagh and P. Contreras., Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2, 86 (2012). https://doi.org/10.1002/widm.53 DOI: https://doi.org/10.1002/widm.53

P. S. Nayak and B. K. Singh, Bull. Mater. Sci. 30, 235 (2007). https://doi.org/10.1007/s12034-007-0042-5 DOI: https://doi.org/10.1007/s12034-007-0042-5

R. Norstrom, Graduate Thesis and Dissertations, U. of South Florida, January 2014 http://scholarcommons.usf.edu/etd/5285.

C. Papachristodoulou, et al., Anal. Chimica Acta 573, 347 (2006). https://doi.org/10.1016/j.aca.2006.02.012 DOI: https://doi.org/10.1016/j.aca.2006.02.012

J. B. Phipps, Systematic Zoology 20, 306 (1971). https://doi.org/10.2307/2412343 DOI: https://doi.org/10.2307/2412343

P. M. Rice and M. E. Saffer, J. Arc. Sci. 9, 395 (1982). https://doi.org/10.1016/0305-4403(82)90045-0 DOI: https://doi.org/10.1016/0305-4403(82)90045-0

F. J. Rohlf and D. L. Fisher, Systematic Zoology 17, 407 (1968). https://doi.org/10.1093/sysbio/17.4.407 DOI: https://doi.org/10.1093/sysbio/17.4.407

R. R. Sokal and S. J. Rohlf, Taxon 11, 33 (1962). https://doi.org/10.2307/1217208 DOI: https://doi.org/10.2307/1217208

V. A. Solé, E. Papillon, M. Cotte, Ph. Walter and J. Susini, Spectrochim. Acta Part B 62, 63 (2007). https://doi.org/10.1016/j.sab.2006.12.002 DOI: https://doi.org/10.1016/j.sab.2006.12.002

A. Sturz, M. Itoh, and S. Smith, Proceedings of the Ocean Drilling Program, Scientific Results 158, 277 (1998). https://doi.org/10.2973/odp.proc.sr.158.221.1998 DOI: https://doi.org/10.2973/odp.proc.sr.158.221.1998

R. H. Tykot, Appl. Spectroscopy 70, 42 (2015). https://doi.org/10.1177/0003702815616745 DOI: https://doi.org/10.1177/0003702815616745

U. Wagner, et al., Radiation in Art and Archaeometry, Eds. D. C. Creagh and D. A Bradley. Ch. 18, 417-443. Elsevier Science, Amsterdam, The Netherlands (2000).

S. Watanabe, et al., Spec. Acta Part A: Mol. and Biomol. Spectroscopy 71, 1261 (2008). https://doi.org/10.1016/j.saa.2008.03.034. DOI: https://doi.org/10.1016/j.saa.2008.03.034

J. B. Weems (1903). Chemistry of Clays. Iowa Geological Survey Annual Report, 14, 319–346.

A. L. Wilson, J. Archaeological Sci. 5, 219 (1978). https://doi.org/10.1016/0305-4403(78)90041-9 DOI: https://doi.org/10.1016/0305-4403(78)90041-9

How to Cite
M. Castro-Colin; E. Ramirez-Homs; J. A. López. A Data Mining Perspective of XRF Elemental Analysis from Pueblo People’s Pottery. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 129-138.