Structural Variations Induced by Temperature Changes in Rotavirus VP6 Protein Immersed in an Electric Field and Their Effects on Epitopes of The Region 300-396

  • C. Peña-Negrete Molecular Biophysics Laboratory of the Faculty of Sciences, Autonomous University of the State of Mexico, Mexico
  • M.A. Fuentes-Acosta Molecular Biophysics Laboratory of the Faculty of Sciences, Autonomous University of the State of Mexico, Mexico
  • J. Mulia Molecular Biophysics Laboratory of the Faculty of Sciences, Autonomous University of the State of Mexico, Mexico
  • L.A. Mandujano-Rosas Molecular Biophysics Modeling and Prototyping Laboratory, Mexiquense University, S. C., State of Mexico, Mexico
  • D. Osorio-González Molecular Biophysics Laboratory of the Faculty of Sciences, Autonomous University of the State of Mexico, Mexico
Keywords: Rotavirus, VP6, Antigenic determinants

Abstract

Rotavirus diarrhea is an infectious intestinal disease that causes about 215 thousand deaths annually in infants under five years old. This virus is formed by three layers of concentric proteins that envelop its genome, from which VP6 structural protein is the most conserved among rotavirus serotypes and an excellent vaccine candidate. Recent studies have shown that structural proteins are susceptible to losing their biological function when their conformation is modified by moderate temperature increments, and in the case of VP6, its antigen efficiency decreases. We performed an in silicoanalysis to identify the structural variations in the epitopes 301-315, 357-366, and 376-384 of the rotavirus VP6 protein -in a hydrated medium- when the temperature is increased from 310 K to 322 K. In the latter state, we applied an electric field equivalent to a low energy laser pulse and calculated the fluctuations per amino acid residue. We identified that the region 301-315 has greater flexibility and density of negative electrical charge; nevertheless, at 322 K it experiences a sudden change of secondary structure that could decrease its efficiency as an antigenic determinant. The applied electric field induces electrical neutrality in the region 357-366, whereas in 376-384 inverts the charge, implying that temperature changes in the range 310 K-322 K are a factor that promotes thermoelectric effects in the VP6 protein epitopes in the region 300-396.

Downloads

Download data is not yet available.

References

J. E. Tate et al., Clin Infect Dis. Dis. 62, S96 (2016). https://doi.org/10.1093/cid/civ1013

M. K. Estes and H. B. Greenberg, in Fields Virology, edited by D. M. Knipe and P. M. Howley (Lippincott Williams & Wilkins, Philadelphia, 2013), 6th ed., 1347–1401.

R. L. Ward and M. M. McNeal,J. Infect. Dis. 202, S101 (2010). https://doi.org/10.1086/653556

S. Lappalainen et al., Archives of virology 160, 2075 (2015). https://doi.org/10.1007/s00705-015-2461-8

M. Mathieu et al., EMBO J 20, 1485 (2001). https://doi.org/10.1093/emboj/20.7.1485

I. Erk et al., J. Virol. 77, 3595 (2003). https://doi.org/10.1128/JVI.77.6.3595-3601.2003

T. Grant and N. Grigorieff, Elife 4, e06980 (2015). https://doi.org/10.7554/eLife.06980

W. I. García-García et al., Bioelectrochemistry 127, 180 (2019). https://doi.org/10.1016/j.bioelechem.2019.02.012

K. F. Ready and M. Sabara, Virology 157, 189 (1987). https://doi.org/10.1016/0042-6822(87)90328-X

J. Lepault et al., EMBO J. 20, 1498 (2001). https://doi.org/10.1093/emboj/20.7.1498

K. F. M. Ready, M. I. J. Sabara and L. A. Babiuk, Virology 167, 269 (1988). https://doi.org/10.1016/0042-6822(88)90077-3

E. A. Mansell, R. F. Ramig and J. T. Patron, Virology 204, 69 (1994). https://doi.org/10.1006/viro.1994.1511

M. Munoz, M. Rios and E. Spencer, Intervirology 38, 256 (1995). https://doi.org/10.1159/000150448

G. Tosser et al., J. Virol. 66, 5825 (1992).

A. H. Choi et al., Vaccine 21, 761 (2003). https://doi.org/10.1016/S0264-410X(02)00595-9

M. M. McNeal et al., Virology 363, 410 (2007). https://doi.org/10.1016/j.virol.2007.01.041

M. A. Franco et al., J. Gen. Virol 75, 589 (1994). https://doi.org/10.1099/0022-1317-75-3-589

W. Zhao, B. Pahar and K. Sestak, Virology: research and treatment 1, 9 (2008). https://doi.org/10.4137/VRT.S563

B. Winter and M. Faubel, Chem. Rev. 106, 1176 (2006). https://doi.org/10.1021/cr040381p

S. A. Egorov, K. F. Everitt and J. L. Skinner, J. Phys. Chem. A 103, 9494 (1999). https://doi.org/10.1021/jp9919314

D. R. Hekstra et al., Nature 540, 400 (2016). https://doi.org/10.1038/nature20571

M. Parra et al., Virology 191, 452–453 (2014). https://doi.org/10.1016/j.virol.2014.01.014

O. V. Morozova et al., Virus genes 54, 225 (2018). https://doi.org/10.1007/s11262-017-1529-9

M. C. Jaimes, N. Feng and H. B. Greenberg, J virol 79, 4568 (2005). https://doi.org/10.1128/JVI.79.8.4568–4579.2005

J. Q. Jiang et al., J virol 82, 6812 (2008). https://doi.org/10.1128/JVI.00450-08

A. H. C. Choi et al., J virol 74, 11574 (2000). https://doi.org/10.1128/JVI.74.24.11574-11580.2000

M. S. Aiyegbo et al., PLoS ONE 8, e61101 (2013). https://doi.org/10.1371/journal.pone.0061101

Published
2020-02-28
How to Cite
C. Peña-Negrete, M.A. Fuentes-Acosta, J. Mulia, L.A. Mandujano-Rosas, & D. Osorio-González. (2020). Structural Variations Induced by Temperature Changes in Rotavirus VP6 Protein Immersed in an Electric Field and Their Effects on Epitopes of The Region 300-396. Journal of Nuclear Physics, Material Sciences, Radiation and Applications, 7(2), 189-194. https://doi.org/10.15415/jnp.2020.72024
Section
Articles