Simultaneous Grafting of Poly(Acrylic Acid) and Poly(Ethylene Glycol) onto Chitosan using Gamma Radiation: Polymer Networks for Removal of Textile Dyes


  • M. D. P. Carreón-Castro Department of Radiation Chemistry and Radiochemistry, Institute of Nuclear Science, National Autonomous University of Mexico. Circuito Exterior, Ciudad Universitaria, 04510, Ciudad de México, México
  • M. Caldera-Villalobos Department of Radiation Chemistry and Radiochemistry, Institute of Nuclear Science, National Autonomous University of Mexico. Circuito Exterior, Ciudad Universitaria, 04510, Ciudad de México, México
  • B. Leal-Acevedo Radiation and Radiation Safety Unit, Institute of Nuclear Science, National Autonomous University of Mexico. Circuito Exterior, Ciudad Universitaria, 04510, Ciudad de México, México
  • A. M. Herrera-González Laboratory of Polymers, Institute of Basic Science and Engineering, Autonomous University of Hidalgo State. Carretera Pachuca- Tulancingo, Colonia Carboneras, 42184, Mineral de la Reforma, Hidalgo, México



Graft-copolymerization, Gamma radiation, Crosslinking, Adsorption, Wastewater treatment


Chitosan is a bio-based polyelectrolyte with high potential for wastewater treatment. Chitosan can remove anionic dyes by adsorption but it has low performance in the removal of cationic dyes. In this work, we report the synthesis of chitosan-based graft-copolymers using gamma radiation. Acrylic acid and poly(ethylene glycol) were grafted successfully onto chitosan applying a radiation dose of 12 kGy at a dose rate of 8 kGyh-1. The grafted-copolymers have improved adsorptive properties for the removal of basic dyes reaching a maximum adsorption capacity higher than 300 mgg-1. The Lanmguir’s isotherm model described satisfactorily the interaction between the grafted copolymers and basic dyes. Freundlich’s isotherm model described the adsorption of anionic dye acid orange 52. The grafted copolymers removed successfully textile dyes from wastewater of the dyeing process. The best results were obtained in the removal of direct and basic dyes. Further, poly(ethylene glycol) grafted on the copolymer conferred better swelling behavior making easy the separation of the adsorbent after dye removal. The results showed that the adsorbent materials synthesized by radiochemical graftcopolymerization are more efficient than the beads, composite materials, and blends of chitosan.


Download data is not yet available.


W. Qiu, M. Vakili, G. Cagnetta, J. Huang, and G. Yu, International Journal of Biological Macromolecules 148, 543 (2020).

T. Kekes, and C. Tzia, Jorunal of Environmental Management 262, 110372 (2020).

F. Gu, J. Geng, M. Li, J. Chang, and Y. Cui, ACS Omega 4, 21421 (2019).

J. Zhao, T. Xing, Q. Li, Y. Chen, W. Yao, S. Jin, and S. Chen, Journal of Applied Polymer Science 137, 48980 (2020).

A.H. Jawad, N.S.A. Mubarak, and A.S. Abdulhameed, J. Polym. Environ. 28, 624 (2020).

A. Mokhtar, S. Abdelkrim, A. Djelad, A. Sardi, B. Boukoussa, M. Sassi, and A. Bengueddach, Carbohydrate Polymers 229, 115399 (2020).

X. Yang, Y. Li, H. Gao, C. Wang, X. Zhang, and H. Zhou, International Journal of Biological Macromolecules 117, 30 (2018).

T.S. Vo, T.T.B.C. Vo, J.W. Suk, and K. Kim, Nano Convergance 7, 4 (2020).

S. Bondock, A.A. El-Zahhar, M.M. Alghamdi, and S.M.A.S. Keshk, International Journal of Biological Macromolecules 137, 107 (2019).

O. León, A. Muñoz-Bonilla, D. Soto, D. Pérez, M. Rangel, M. Colina, and M. Fernández-García, Carbohydrate Polymers 194, 375 (2018).

A.M. Morales-Burgos, E. Carvajal-Millan, N. Sotelo-Cruz, A.C. Campa-Mada, A. Rascón-Chu, Y. Lopez-Franco and J. Lizardi-Mendoza, Chapter 4 - Polysaccharides in Alternative Methods for Insulin Delivery, In: Biopolymer Grafting: Synthesis and Properties, edited by V. Kumar Thakur, Elsevier, 2018, pp.175-197.

R.C. Da Silva, S.B. de Aguiar, P.L.R. da Cunha, R.C.M. de Paula, and J.P. Feitosa, Reactive and Functional Polymers 148, 104491 (2020).

N.H. Yusof, K.Y. Foo, L.D. Wilson, B.H. Hameed, M.H. Hussin, and S. Sabar, J. Polym. Environ. 148, 1 (2019).

A. Chapiro, Radiation Effects in Polymers. In: Encyclopedia of Materials: Science and Technology, edited by K.H. Jürgen Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, P. Veyssière and E.J. Cramer, 2nd ed., Elsevier, 2004, pp.1-8.

A. Khan, T. Huq, R.A. Khan, D. Dussault, S. Salmieri, and M. Lacroix, Radiation Physics and Chemistry 81, 941 (2012).

L. Pengfei, Z. Maolin, and W. Jilan, Radiation Physics and Chemistry 61, 149 (2001).

T.T. Hanh, H.T. Huy, and N.Q. Hien, Radiation Physics and Chemistry 106, 235(2015).

S. Beil, A. Schamberger, W. Naumann, S. Machill, and K.H. Van Pée, Carbohydrate Polymers 87, 117 (2012).

M.R. Kasaai, J. Arul, and G. Charlet, Journal of Polymer Science Part B: Polymer Physics 38, 2591 (2000).<2591::AID-POLB110>3.0.CO;2-6

W.S. Choi, K.J. Ahn, D.W. Lee, M.W. Byun, and H.J. Park, Polymer Degradation and Stability 78, 533 (2002).

P. Faria, J. Orfao, and M. Pereira, Water Research 38, 2043 (2004).

A.M. Herrera‐González, A.A. Peláez‐Cid, and M. Caldera‐Villalobos, J. Chem.Technol. Biotechnol. 92, 1488 (2017).

T. K. Arumugam, P. Krishnamoorthy, N. R. Rajagopalan, S. Nanthini, and D. Vasudevan, Int. J. Biol. Macromol. 128, 655 (2019).

F. Naseeruteen, N.S.A. Hamid, F.B.M. Suah, W.S.W. Ngah, and F.S. Mehamod, Int. J. Biol. Macromol. 107, 1270 (2018).

M. Khajavian, E. Salehi, and V. Vatanpour, Separation and Purification Technology 241, 116759 (2020).

A. ZabihiSahebi, S. Koushkbaghi, M. Pishnamazi, A. Askari, R. Khosravi and M. Irani, International Journal of Biological Macromolecules 140, 1296 (2019).

S. Yu, J. Cui, H. Jiang, C. Zhong, and J. Meng, Int. J. Biol. Macromol. 134, 830 (2019).