Formic Acid Ionization and Fragmentation by Multiphoton Absorption

Authors

  • C. Cisneros Institute of Physical Sciences, National Autonomous University of Mexico (UNAM)1001Av. Universidad S/N, Chamilpa, 62210, Cuernavaca, Morelos, México
  • T. Bautista Institute of Physical Sciences, National Autonomous University of Mexico (UNAM)1001Av. Universidad S/N, Chamilpa, 62210, Cuernavaca, Morelos, México
  • C. F. Betancourt Institute of Physical Sciences, National Autonomous University of Mexico (UNAM)1001Av. Universidad S/N, Chamilpa, 62210, Cuernavaca, Morelos, México
  • E. Prieto Institute of Physical Sciences, National Autonomous University of Mexico (UNAM)1001Av. Universidad S/N, Chamilpa, 62210, Cuernavaca, Morelos, México
  • A. Guerrero Institute of Physical Sciences, National Autonomous University of Mexico (UNAM)1001Av. Universidad S/N, Chamilpa, 62210, Cuernavaca, Morelos, México
  • I. Álvarez Institute of Physical Sciences, National Autonomous University of Mexico (UNAM)1001Av. Universidad S/N, Chamilpa, 62210, Cuernavaca, Morelos, México

DOI:

https://doi.org/10.15415/jnp.2021.82026

Keywords:

Laser Formic acid, Multiphoton, Dissociation, Ionization

Abstract

Multiphoton absorption is an intensity dependent nonlinear effect related to the excitation of virtual intermediate states. In the present work, multiphoton ionization and dissociation of the formic acid molecule (HCOOH) by the interaction with photons from 532 Nd: YAG laser at different intensities are discussed, using different carrier gases. The induced fragmentation-ionization patterns show up to 17 fragments and dissociation channels are proposed. Some evidence of small clusters formation and conformational memory from the ratio of the detected products, CO+ and CO2+, on the light of the available results, it is possible to conclude that they arise from trans and cis formic acid. Our results are compared with those obtained in other laboratories under different experimental conditions, some of them show only partial agreement and differences are discussed. Following the Keldysh description it is possible, from our experimental parameters, characterize our results, in the multiphoton absorption regime.

Downloads

Download data is not yet available.

References

J.F. Kasting and L. Brown, The early atmosphere as a source of biogenic compounds. In: The Molecular Origins of Life, edited by A. Brack, Cambridge University Press, Cambridge, UK, 2010, p. 35-56. https://doi.org/10.1017/CBO9780511626180.004

H. Su, W. Mao and F. Kong, Chemical Physics Letters 322, 21 (2000). https://doi.org/10.1177/0170840600211014

B. Zuckerman, J.A. Ball and C.A. Gottlieb, Astrophysical Journal 163, L41 (1971). https://doi.org/10.1086/180663

R.I. Kaiser, Chemical Reviews 102, 1309 (2002). https://doi.org/10.1021/cr970004v

H.A. Khwaja, Atmospheric Environment 29, 127 (1995). https://doi.org/10.1016/1352-2310(94)00211-3

E.G. Chapman, D.V. Kenny, K.M. Busness, J.M. Thorp and C.W. Spicer, Geophysical Research Letters 22, 405 (1995). https://doi.org/10.1029/94GL03023

J.S. Francisco, Journal of Chemical Physics 96, 1167 (1992). https://doi.org/10.1063/1.462204

J.D. Goddard, Y. Yamaguchi and H.F. Schaefer, Journal of Chemical Physics 96, 1158 (1992). https://doi.org/10.1063/1.462203

H. Su, Y. He and F. Kong, Journal of Chemical Physics 113, 1891 (2000). https://doi.org/10.1063/1.482076

M. Schwell, F. Dulieu, H.-W. Jochims, J.-H. Fillion, J.-L. Lemaire, H. Baumgärtel and S. Leach, J. Phys. Chem. A 106, 10908 (2002). https://doi.org/10.1021/jp020809t

A. Galano, J.R. Alvarez-Idaboy, Ma.E. Ruiz-Santoyo and A. Vivier-Bunge, J. Phys. Chem. A 106, 9520 (2000). https://doi.org/10.1021/jp020297i

L. Khriachtchev, M. Pettersson and M. Rasanen, J. Am. Chem. Soc. 124, 10994 (2002). https://doi.org/10.1021/ja0269791

H.-Y. He and W.H. Fang, J. Am. Chem. Soc. 125, 16139 (2003). https://doi.org/10.1021/ja0363157

S. Maeda, T. Taketsugu and K. Morokuma, J. Phys. Chem. Lett. 3, 1900 (2012). https://doi.org/10.1021/jz300728q

S. Maeda, T. Taketsugu, K. Ohno and K. Morokuma, J. Am. Chem. Soc. 137, 3433 (2015). https://doi.org/10.1021/ja512394y

E-Martinez-Nuñez, S. Vázquez, G. Granucci, M. Persico and C.M. Estevez, Chemical Physics Letters 412, 35 (2005). https://doi.org/10.1016/j.cplett.2005.06.091

O. Takahashi, S. Yamanouchi, K. Yamamoto and K. Tabayashi, Chemical Physics Letters 419, 501 (2006). https://doi.org/10.1016/j.cplett.2005.12.027

M. Castillejo, S. Couris, E. Koudoumas and M. Martín, Chemical Physics Letters 308, 373 (1999). https://doi.org/10.1016/S0009-2614(99)00636-3

S. Pilling, A.C.F. Santos, H.M. Boechat-Roberty, G.G.B. de Souza, M.M. Sant’ Anna, A.L.F. Barros, W. Wolff and N.V. de Castro Faria, Brazilian Journal of Physics 36, 538 (2006). https://doi.org/10.1590/S0103-97332006000400011

K. Saito, T. Shiose, O. Takahashi, Y. Hidaka, F. Aiba and K. Tabayashi, The Journal of Physical Chemistry A 109, 5352 (2005). https://doi.org/10.1021/jp045072h

H.M. Boechat-Roberty, S. Pilling and A.C.F. Santos, Astronomy &Astrophysics 438, 915 (2005). https://doi.org/10.1051/0004-6361:20042588

M.S. Arruda, R.R.T. Marinho, A.M. Maniero, M.S.P. Mundin, A. Mocellin, S. Pilling, A.N. de Brito and F.V. Prudente, J. Phys. Chem. A 116, 6693 (2012). https://doi.org/10.1021/jp209259j

K. Tabayashi , K. Yamamoto and O. Takahashi, Journal of Chemical Physics 125, 194307 (2006). https://doi.org/10.1063/1.2387949

D.P.P. Andrade, H.M. Boechat-Roberty, S. Pilling, E.F. da Silveira and M.L.M. Rocco, Surface Science 603, 3301 (2009). https://doi.org/10.1016/j.susc.2009.09.020

C.J. Bennet, T. Hama, Y.S. Kim, M. Kawasaki and R.I. Kaiser, The Astrophysical Journal 727, 27 (2011). https://doi.org/10.1088/0004-637X/727/1/27

J.C. Poveda, I. Alvarez, A. Guerrera-Tapia and C. Cisneros, Revista Mexicana de Física 62, 206 (2016).

L.V. Keldysh, Journal of Experimental and Theoretical Physics 20, 1307 (1965).

M.J. DeWitt and R.J. Levis, Journal of Chemical Physics 110, 11368 (1999). https://doi.org/10.1063/1.479077

NIST Webbook NIST/EPA/NIH Mass Spectral Library

D. Davis, S. Kundu, V.S. Prabhudesai, Y. Sajeev and E. Krishnakumar, Journal of Chemical Physics 149, 064308 (2018). https://doi.org/10.1063/1.5032172

B. Griffin, A. Moradmand, J. Williams, A. Belkasem, T.N. Rescigno, C. Trevison, C.W. McCurdy, T. Weber and D.S. Slaughter, Journal of Physics: Conference Series 1412, 052004 (2020). https://doi.org/10.1088/1742-6596/1412/5/052004

Downloads

Published

2021-02-10

How to Cite

(1)
Cisneros, C.; Bautista, T. .; Betancourt, C. F. .; Prieto, E. .; Guerrero, A. .; Álvarez, I. . Formic Acid Ionization and Fragmentation by Multiphoton Absorption. J. Nucl. Phy. Mat. Sci. Rad. A. 2021, 8, 197-201.

Issue

Section

Articles