Surface Modification of Polypropylene by Atmospheric Pressure Plasma

  • O. Xosocotla Atmospheric Plasmas and Raman Spectroscopy Laboratory, Institute of Physical Sciences, National Autonomous University of Mexico, Av. University #1000, Col. Chamilpa, 62210, Cuernavaca, Morelos; Faculty of Chemistry, National Autonomous University of Mexico https://orcid.org/0000-0003-4594-2854
  • H. Martinez Atmospheric Plasmas and Raman Spectroscopy Laboratory, Institute of Physical Sciences, National Autonomous University of Mexico, Av. University #1000, Col. Chamilpa, 62210, Cuernavaca, Morelos
  • B. Campillo Atmospheric Plasmas and Raman Spectroscopy Laboratory, Institute of Physical Sciences, National Autonomous University of Mexico, Av. University #1000, Col. Chamilpa, 62210, Cuernavaca, Morelos; Faculty of Chemistry, National Autonomous University of Mexico https://orcid.org/0000-0002-3184-0841
Keywords: Atmospheric plasma, Polar groups, Surface free energy

Abstract

In this investigation, we studied the influence of atmospheric pressure plasma treatment on the surface properties of polypropylene (PP). The PP samples were treated for various durations using a gliding arc plasma source with air as a working gas. The formation of polar groups (–OH and C = O) on the PP surface after plasma treatment was evaluated and analyzed using Raman spectroscopy and attenuated total reflection–Fourier transform infrared spectroscopy. The contact angle was measured using polar and non-polar liquids to obtain the polar and dispersive components as well as the surface free energy of the PP before and after treatment. A sevenfold increase after treatment was observed for the polar component, while hydrophobicity decreased 73% after treatment. Finally, changes in topography were observed using atomic force microscopy (AFM) analysis before and after plasma treatment. AFM images showed that under atmospheric treatment, the PP surface underwent etching, reducing the surface roughness. Microhardness measurements of the films also revealed significant changes in mechanical properties after plasma treatment.

Downloads

Download data is not yet available.

References

O.V. Gornukhina, I.A. Vershinina and O.A. Golubchikov, Russian Journal of Applied Chemistry 82, 680 (2009). https://doi.org/10.1134/S1070427209040259

T. Stern and D. Cohn, Journal of Applied Polymer Science 81, 2203 (2001). https://doi.org/10.1002/app.1657

A. Montarsolo, A. Varesano, R. Mossotti, F. Rombaldoni, M. Periolatto, G. Mazzuchetti and C. Tonin. Journal of Applied Polymer Science 126, 1385 (2012). https://doi.org/10.1002/app.36762

Bo-L. Johansson, A. Larsson, A. Ocklind and Å. Öhrlund, Journal of Applied Polymer Science 86, 2618 (2002). https://doi.org/10.1002/app.11209

Oh-J. Kwon, S. Tang, S.-W. Myung, N. Lu and H.-S. Choi, Surface & Coatings Technology 192, 1 (2005). https://doi.org/10.1016/j.surfcoat.2004.09.018

D. Shaw, A. West, J. Bredin and E. Wagenaars, Plasma Sources Science and Technology 25, 065018 (2016). https://doi.org/10.1088/0963-0252/25/6/065018

K. TerpiBowski, International Journal of Polymer Science 2017, 9023197 (2017). https://doi.org/10.1155/2017/9023197

J.H. Ku, I.H. Jung, K.Y. Rhee and S.J. Park, Composites Part B: Engineering 45, 1282 (2013). https://doi.org/10.1016/j.compositesb.2012.06.016

A. Oravcova and I. Hudec, Acta Chimica Slovaca 3, 57 (2010).

H. Šourková, G. Primc and P. Špatenka, Materials 11, 885 (2018). https://doi.org/10.3390/ma11060885

E.M. Liston, L. Martinu and M.R. Wertheimer, Journal of Adhesion Science and Technology 7, 1091 (1993). https://doi.org/10.1163/156856193X00600

E. Stoffels, A.J. Flikweert, W.W. Stoffels and G. M.W. Kroesen, Plasma Sources Science and Technology 11, 383 (2002). https://doi.org/10.1088/0963-0252/11/4/304

A. Rudawska and E. Jacniacka, International Journal of Adhesion & Adhesives 29, 451 (2009). https://doi.org/10.1016/j.ijadhadh.2008.09.008

J. Tsibouklis and T.G. Nevell, Advanced Materials 15, 647 (2003). https://doi.org/10.1002/adma.200301638

M. Żenkiewicz, Journal of Achievements in Materials and Manufacturing Engineering 24, 137 (2007).

D. Shaw, A. West, J. Bredin and E. Wagenaars, Plasma Sources Science and Technology 25, 1 (2016). https://doi.org/10.1088/0963-0252/25/6/065018

E. Andreassen, Polymer Science and Technology Series 2, 320 (1999). https://doi.org/10.1007/978-94-011-4421-6_46

D.E. Gen, K.A. Prokhorov, G.Yu. Nikolaeva, E.A. Sagitova, P.P. Pashinin, B.F. Shklyarukb and E.M. Antipov, Laser Spectroscopy 21, 125 (2011). https://doi.org/10.1134/S1054660X11020010

M.R. Monzó Pérez, Investigation of the influence of the type of gas used in atmospheric plasma, in the surface modification of polypropylene (doctorate thesis). Polytechnic University of Valencia, Valencia, Spain (2015).

J. Nakamatsu, L.F. Delgado-Aparicio, R. Da Silva, and F. Soberon, Journal of Adhesion Science and Technology 13, 753 (1999). https://doi.org/10.1163/156856199X00983

M.R. Abadchi and A. Jalali-Arani, Thermochimica Acta 617, 120 (2015). https://doi.org/10.1016/j.tca.2015.08.027

M.M. Favaro, M.C. Branciforti and R.E.S. Bretas, Materials Research 12, 455 (2009). https://doi.org/10.1590/S1516-14392009000400014

R. Morent, N. De Geyter, C. Leys, L. Gengembre, and E. Payen, Surface and Interface Analysis 40, 597 (2008). https://doi.org/10.1002/sia.2619

S.D. Lee, M. Sarmadi, F. Denes and J.L. Shohet, Plasmas and Polymers 2, 177 (1997). https://doi.org/10.1007/BF02766153

M.J. Shenton and G.C. Stevens, Journal of Physics D: Applied Physics 34, 2761 (2001). https://doi.org/10.1088/0022-3727/34/18/308

N.V. Bhat and D.J. Upadhyay, Journal of Applied Polymer Science 86, 925 (2002).https://doi.org/10.1002/app.11024

Published
2021-02-10
How to Cite
(1)
Xosocotla, O.; Martinez, H.; Campillo, B. Surface Modification of Polypropylene by Atmospheric Pressure Plasma. J. Nucl. Phy. Mat. Sci. Rad. A. 2021, 8, 97-104.
Section
Articles