Changes of the Neutron Flux of the Nuclear Reactor Triga Mark III Since the Conversion from High to Low 235U Enrichment
Abstract
The neutron flux of the Triga Mark III research reactor was studied using nuclear track detectors. The facility of the National Institute for Nuclear Research (ININ), operates with a new core load of 85 LEU 30/20 (Low Enriched Uranium) fuel elements. The reactor provides a neutron flux around 2 × 1012 n cm-2s-1 at the irradiation channel. In this channel, CR-39 (allyl diglycol policarbonate) Landauer® detectors were exposed to neutrons; the detectors were covered with a 3 mm acrylic sheet for (n, p) reaction. Results show a linear response between the reactor power in the range 0.1 - 7 kW, and the average nuclear track density with data reproducibility and relatively low uncertainty (±5%). The method is a simple technique, fast and reliable procedure to monitor the research reactor operating power levels.
Downloads
References
G. Espinosa, Nuclear Tracks in Solids. UNAM, Mexico (1994).
J.K. Palfalvi and L. Sajo-Bohus, Radiation Measurements 28, 483 (1997). https://doi.org/10.1016/S1350-4487(97)00125-X
K. Amgarou, M. Trocmé, M.J. García-Fusté, M. Vanstalle, E. Baussan, A. Nourreddine and C. Domingo, Radiation Measurements 50, 61 (2013). https://doi.org/10.1016/j.radmeas.2012.11.015
J.K. Palfalvi, L. Sajo-Bohus, M. Balaskó and I. Balásházy, Radiation Measurements 34, 471 (2001). https://doi.org/10.1016/S1350-4487(01)00209-8
R. Bedogni, C. Domingo, A. Esposito, A. Gentile, M.J. García-Fusté, M. de-San-Pedro, L. Tana, F. d’Errico, R. Ciolini and A. Di Fulviod, Radiation Measurements 50, 78 (2013). https://doi.org/10.1016/j.radmeas.2012.04.009
S.R. Hashemi-Nezhad, M. Dolleiser, R. Brandt, W. Westmeier, R. Odoj, M.I. Krivopustov, B.A. Kulakov and A.N. Sosnin, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 493, 121 (2002). https://doi.org/10.1016/S0168-9002(02)01551-6
E.S. Kristof, R. Ilic, M. Humar and J. Skvarc, Proceedings of 4th Regional Meeting Nuclear Energy in Central Europe, 381-387 (1997).
J.K. Palfalvi, L. Sajo-Bohus and M. Balaskó, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 476, 452 (2002). https://doi.org/10.1016/S0168-9002(01)01489-9
A.R. El-Sersy and S.A. Eman, European Physical Journal A 44, 397 (2010). https://doi.org/10.1140/epja/i2010-10975-1
F. Aguilar-Hernandez, MEXICAN TRIGA MARKIII REACTOR (International Atomic Energy Agency, 2015). Retrieved from https://wwwpub.iaea.org/MTCD/Publications/PDF/SupplementaryMaterials/D482/LatinAmericaAndTheCaribbean.pdf
F. Castillo, G. Espinosa, J.I. Golzarri, D. Osorio, J. Rangel, P.G. Reyes and J.J.E. Herrera, Radiation Measurements 50, 71 (2013). https://doi.org/10.1016/j.radmeas.2012.09.007
G. Espinosa, J.I. Golzarri, I. Gamboa, L. Tommasino and R. Griffith, International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 12, 235 (1986). https://doi.org/10.1016/1359-0189(86)90578-9
R. Gammage and G. Espinosa, Radiation Measurements 28, 835 (1997). https://doi.org/10.1016/S1350-4487(97)00193-5
Copyright (c) 2021 O. Del Ángel-Gómez et al.

This work is licensed under a Creative Commons Attribution 4.0 International License.
View Legal Code of the above-mentioned license, https://creativecommons.org/licenses/by/4.0/legalcode
View Licence Deed here https://creativecommons.org/licenses/by/4.0/
![]() |
Journal of Nuclear Physics, Material Sciences, Radiation and Applications by Chitkara University Publications is licensed under a Creative Commons Attribution 4.0 International License. Based on a work at https://jnp.chitkara.edu.in/ |