Wear Behavior of a Ni/Co Bilayer Coating by Physical Vapor Deposition on AISI 1045 Steel


  • E. Pardo L. Center of Research in Engineering and Applied Science, FCQeI UAEM., Av Univ. 1001 Col., Chamilpa 62209, Cuernavaca Mor., Mexico
  • S. E. Rodil Institute of Material Research, Autonomous National University of Mexico. Circuito Exterior s/n CU, Mexico City 04510, Mexico
  • B. Campillo Faculty of Chemestry, National Autonomous University of Mexico (UNAM), Circuito de la Investigación Científica S/N, Ciudad Universitaria, C.P. 04510, Mexico City, Mexico
  • I. Dominguez Research Center for Applied Science and Advanced Technology, National Polytechnic Institute.Cerro Blanco No. 141 Col. Colinas del Cimatario, C.P. 76090 Querétaro, Querétaro. Mexico
  • J. G. González-Rodriguez Center of Research in Engineering and Applied Science, FCQeI UAEM., Av Univ. 1001 Col., Chamilpa 62209, Cuernavaca Mor., Mexico
  • H. Martinez Institute of Physical Sciences, Autonomous National University of Mexico, P.O. Box 48-3, Av. Universidad s/n, Col. Chamilpa 62210, Cuernavaca Mor., México




Boron Nitride, Tribological tests, Abrasive an adhesive wear, Wear factor


Coatings by physical vapor deposition (PVD) have become highly relevant due to their wide range of applications and the rapid rate of coating formation. In this work, AISI steel 1045 was coated with two layers, Ni and Co using the PVD technique. Each coating was deposited with a thickness of 1 μm. After applying the coatings, a post-treatment was applied in an AC plasma reactor using a boron nitride blank in an Ar atmosphere at a pressure of 3 Torr, 0.3 A, and 460 V at 4, 8, and 12h. The post-treatment was characterized by optical emission spectroscopy (OES) in a range of 200-1100 nm. The main species observed by OES were Ar+, N2, N2+, and B+. The coatings on 1045 steel and posttreatment were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Also, were subjected to tribological tests to analyze wear resistance, using the Pin-on-Disk technique. The coatings on steel 1045 present remarkably better wear properties than the uncoated 1045 steel, being the sample post-treated at 4h that showed a lower wear rate.


Download data is not yet available.


R. Charadia, M. Regis, E.L. Dalibon and S.P. Brühl, CONAMET/SAM (2015). http://ria.utn.edu.ar/bitstream/handle/123456789/889/GIS63.pdf?sequence=1&isAllowed=y

R. Günzel, M. Betzl, I. Alphonsa, B. Ganguly, P.I. John and S. Mukherjee, Surface and Coatings Technology 112, 307 (1999). https://doi.org/10.1016/S0257-8972(98)00776-2

T. Hirsch, T.G.R. Clarke and A. da S. Rocha, Surface and Coatings Technology 201, 6380 (2007). https://doi.org/10.1016/j.surfcoat.2006.12.005

F. Mahboubi & M. Fattah, Vacuum 79, 1 (2005). https://doi.org/10.1016/j.vacuum.2005.01.002

F. Hakami, M.H. Sohi and J.R. Ghani, Thin Solid Films 519, 6792 (2011). https://doi.org/10.1016/j.tsf.2011.04.054

S. Kikuchi, T. Fukuoka, T. Sasaki, J. Komotori, K. Fukazawa, Y. Misaka and K. Kawasaki, Materials Transactions 54, 344 (2013). https://doi.org/10.2320/matertrans.MBW201205

I. Rosales, H. Martinez and R. Guardian Applied Surface Science 371, 576 (2016). http://dx.doi.org/10.1016/j.apsusc.2016.03.048

García Lorente J.A. and Rodríguez Trias R. Recubrimientos tribológicos por PVD. Ingeniería Química, ISSN 0210-2064, N° 418, p. 107-110 (2004).

K. Chu and Y.G. Shen, Surf Eng 24, 402 (2008) http://dx.doi.org/10.1179/174329408X282541

E. Martínez, J. Romero, A. Lousa and J. Esteve, Surface and Coatings Technology 163–164, 571 (2003). https://doi.org/10.1016/S0257-8972(02)00664-3

M. Berger, U. Wiklund, M. Eriksson, H. Engqvist and S. Jacobson, Surface and Coatings Technology 116–119, 1138 (1999). https://doi.org/10.1016/S0257-8972(99)00151-6

F. Ge, X. Zhou, F. Meng, Q. Xue and F. Huang, Tribology International 99, 140 (2016). https://doi.org/10.1016/j.triboint.2015.10.019

K. Krishnaveni, T.S.N. Sankara Narayanana, S.K. Seshadri, Surface and Coatings Technology 190, 115 (2005). https://doi.org/10.1016/j.triboint.2015.10.019

G.G. Gawrilov, Chemical (Electroless) Nickel Plating, Portcullis Press Ltd., Surrey (1979).

G.O. Mallory, J.B. Hadju (Eds.), Electroless Plating: Fundamentals and Applications, AESF, Orlando (1991).

W. Riedel, Electroless Plating. ASM International, Ohio (1991).

M. Keddam, M. Kulka, N. Makuch, A. Pertek and L. Małdzinski, Applied Surface Science 298, 155 (2014). https://doi.org/10.1016/j.apsusc.2014.01.151

U. Fantz, Plasma Sources Science and Technololgy 15, S137 (2006). http://dx.doi.org/10.1088/0963-0252/15/4/S01

I. Hacisalihoglua, F. Yildiz and A. Alsaran, Wear 384-385, 159 (2017). https://doi.org/10.1016/j.wear.2017.01.117

Z. Sukackienė, L. Tamašauskaitė-Tamašiūnaitė, V. Jasulaitienė, A. Balčiūnaitė, A. Naujokaitis and E. Norkus, Thin Solid Films 636, 425 (2017). https://doi.org/10.1016/j.tsf.2017.06.034