Gamma Irradiation of Aqueos Solution of L-Aspartic Acid, L-Aspartic Acid in Solid State, and L-Aspartic Acid Adsorbed into Na-Montmorillonite: Its Relevance in Chemistry Prebiotic

Authors

  • A. Meléndez-López Instituto de Geología, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510; Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, 04510 Coyoacán, CDMX https://orcid.org/0000-0002-2158-352X
  • M. F. García-Hurtado Facultad de Ciencias, Universidad Nacional Autónoma de México, Cicuito Exterior S/N, C.U., 04510, CDMX
  • J. Cruz-Castañeda Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, 04510 Coyoacán, CDMX
  • A. Negrón-Mendoza Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, 04510 Coyoacán, CDMX
  • S. Ramos-Bernal Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, 04510 Coyoacán, CDMX
  • A. Heredia Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, 04510 Coyoacán, CDMX

DOI:

https://doi.org/10.15415/jnp.2021.82012

Keywords:

L-aspartic Acid, Na-montmorillonite, Adsorption-Desorption Processes, Gamma Radiation Processes

Abstract

Aspartic acid is an amino acid present in the modern proteins, however, is considered a primitive amino acid hence its importance in prebiotic chemistry experiments studies. In some works of prebiotic chemistry have been studied the synthesis and the stability of organic matter under high energy sources, and the role of clays has been highlighted due to clays that can affect the reaction mechanisms in the radiolytic processes. The present work is focused on the study of the role of Namontmorillonite in the gamma radiolysis processes of L-aspartic acid. Gamma radiolysis processes were carried out in three different systems a) L-aspartic acid in aqueous solution; b) L-aspartic acid in solid-state; and c) L-aspartic acid adsorbed into Na-montmorillonite. L-aspartic acid was analyzed by high-performance liquid chromatography−electrospray ionization−mass spectrometry (HPLCESI-MS). The results showed that the decomposition of L-aspartic acid considerably decreased in the presence of clay thus highlighting the protector role of clays and favors the stability of organic matter even under the possible high energy conditions of primitive environments. The principal product of
gamma radiolysis of L-aspartic acid was succinic acid produced by deamination reaction. On the other hand, when aspartic acid was irradiated in solid-state the main product was the L-aspartic acid dimer. Both radiolysis products are important for chemical evolution processes for L-aspartic acid in primitive environments.

Downloads

Download data is not yet available.

References

G. Karp, Cell and Molecular Biology: Concepts and Experiments (John Wiley, 2008).

K. Kobayashi, T. Kasamatsu, T. Kaneko, J. Koike, T. Oshima, T. Saito, T. Yamamoto and H. Yanagawa, Advances in Space Research 16, 21 (1995). https://doi.org/10.1016/0273-1177(95)00188-K

G.M. Muñoz Caro, U.J. Meierhenrich, W.A. Schutte, B. Barbier, A.A. Segovia, H. Rosenbauer, W.H.-P. Thiemann, A. Brack and J. M. Greenberg, Nature 416, 403 (2002). https://doi.org/10.1038/416403a

R.L. Hudson and M.H. Moore, Icarus 172, 466 (2004). https://doi.org/10.1016/j.icarus.2004.06.011

P. Modica, P. de Marcellus, D. Baklouti, R. Brunetto, M. Noun, S. Della Negra and L. Le Sergeant d’Hendecourt, EAS Publications Series 58, 343 (2012). https://doi.org/10.1051/eas/1258056

A. Negron-Mendoza and S. Ramos-Bernal, Radiat. Phys. Chem. 52, 395 (1998). https://doi.org/10.1016/S0969-806X(98)00059-0

I.G. Draganić, Z.D. Draganić and J.P. Adloff, Radiation and Radioactivity on Earth and Beyond, (CRC Press, 1993).

A. Guzmán, A. Negrón-Mendoza and S. Ramos-Bernal, Cellular and Molecular Biology (Noisy-le-Grand, France) 48, 525 (2002).

P.R. Anizelli, J.P.T. Baú, D.F. Valezi, L.C. Canton, C.E.A. Carneiro, E. Di Mauro, A.C.S. Da Costa, D. Galante, A.H. Braga, F. Rodrigues, J. Coronas, C. Casado-Coterillo, C.T.B.V. Zaia and D.A.M. Zaia, Microporous and Mesoporous Materials 226, 493 (2016). https://doi.org/10.1016/j.micromeso.2016.02.004

J.W.T Spinks and R.J.Woods. Introduction to Radiation Chemistry, 3rd ed. (JohnWiley and Sons, Inc., New York, 1990).

Downloads

Published

2021-02-10

How to Cite

(1)
Meléndez-López, A. .; García-Hurtado, M. F.; Cruz-Castañeda, J. .; Negrón-Mendoza, A.; Ramos-Bernal, S.; Heredia, A. Gamma Irradiation of Aqueos Solution of L-Aspartic Acid, L-Aspartic Acid in Solid State, and L-Aspartic Acid Adsorbed into Na-Montmorillonite: Its Relevance in Chemistry Prebiotic. J. Nucl. Phy. Mat. Sci. Rad. A. 2021, 8, 105-108.

Issue

Section

Articles