Appearance / Disappearance of Magic Number in Light Nuclei

Authors

DOI:

https://doi.org/10.15415/jnp.2021.91018

Keywords:

Magic number, Shell closure, Separation energy, Light Nuclei

Abstract

The shell structure of a nucleus is important to study their observed characteristic features. The classic magic numbers are successful in explaining the nuclear properties for nuclei lying near the stability line. The advent of radioactive ion beam facilities has permitted to examine nuclei in their extreme proton to neutron ratio. The light exotic nuclei were found to exhibit unique shell closure behaviour which is different from the medium mass nuclei near the stability line. The two nucleon separation energy difference systematics was used as a probe to study the magic character of light nuclei. New proton and neutron magic numbers were predicted among the available even Z isotopes and even N isotones. For certain systems, the classic magic numbers were found to be non-magic, while for some systems the magic property is retained even at the drip lines. The shell closure behaviour predicted is found to depend on the version of the mass table.

Downloads

Download data is not yet available.

References

M. G. Mayer, Physical Review 75, 1969 (1949). https://doi.org/10.1103/PhysRev.75.1969

O. Haxel, J. H. D. Jensen and H. E. Suess, Physical Review 75, 1766 (1949). https://doi.org/10.1103/PhysRev.75.1766.2

A. Ozawa, T. Kobayashi, T. Suzuki, K. Yoshida and I. Tanihata, Physical Review Letters 84, 5493 (2000). https://doi.org/10.1103/PhysRevLett.84.5493

D. Steppenbeck et al., Nature 502, 207 (2013). https://doi.org/10.1038/nature12522

F. Wienholtz et al., Nature 498, 346 (2013). https://doi.org/10.1038/nature12226

B. Bastin et al., Physical Review Letters 99, 022503 (2007). https://doi.org/10.1103/PhysRevLett.99.022503

S. Takeuchi et al., Physical Review Letters 109, 182501 (2012). https://doi.org/10.1103/PhysRevLett.109.182501

H. Simon et al., Phys. Rev. Lett. 83, 496 (1999). https://doi.org/10.1103/PhysRevLett.83.496

R. V. F. Janssens, Nature 435, 897 (2005). https://doi.org/10.1038/435897a

T. Otsuka et al., Phys. Rev. Lett. 87, 082502 (2001). https://doi.org/10.1103/PhysRevLett.87.082502

T. K. Jha, M. S. Mehta, S. K. Patra, B. K. Raj and R. K. Gupta, Pramana 61, 517 (2003). https://doi.org/10.1007/BF02705475

R. K. Gupta, S. Kumar, M. Balasubramaniam, G. Mnzenberg and W. Scheid, Journal of Physics G: Nuclear and Particle Physics 28, 699 (2002). https://doi.org/10.1088/0954-3899/28/4/309

R. K. Gupta, M. Balasubramaniam, S. Kumar, S. K. Patra, G. Mnzenberg and W. Greiner, Journal of Physics G: Nuclear and Particle Physics 32, 565 (2006). https://doi.org/10.1088/0954-3899/32/4/012

C. Samanta and S. Adhikari, Physical Review C 65, 037301 (2002). https://doi.org/10.1103/PhysRevC.65.037301

C. Karthika and M. Balasubramanaim, Accepted Int. J. Mod. Phys. E (2021).

W. Meng, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi and X. Xing, Chinese Physics C 41, 030003 (2017). https://doi.org/10.1088/1674-1137/41/3/030003

G. Audi, A. H. Wapstra and C. Thibault, Nuclear Physics A 729, 337 (2003). https://doi.org/10.1016/j.nuclphysa.2003.11.003

M. Wang, G. Audi, A. H. Wapstra, F. G. Kondev, M. MacCormick, X. Xu and B. Pfeiffer, Chinese Physics C 36, 1603 (2012).

https://doi.org/10.1088/1674-1137/36/12/003

Downloads

Published

2021-08-31

Issue

Section

Articles