Decay Analysis of 197Tl* Compound Nucleus Formed in 16O + 181Ta Reaction at above Barrier Energy Ec.m.~100 MeV

Authors

DOI:

https://doi.org/10.15415/jnp.2021.91017

Keywords:

Fusion-fission, Radius parameters, Dynamical Cluster-Decay Model

Abstract

The decay dynamics of 197Tl* compound nucleus has been studied within the framework of the dynamical cluster-decay model (DCM) at above barrier energy Ec.m. ≈ 100 MeV using quadrupole deformed configuration of decay fragments. The influence of various nuclear radius parameters on the decay path and mass distributions has been investigated by analysing the fragmentation potential and preformation probability. It is observed that 197Tl* nucleus exhibits the triple-humped mass distribution, independent of nuclear radius choice. The most preferred fission fragments of both fission modes (symmetric and asymmetric) are identified, which lie in the neighborhood of spherical and deformed magic shell closures. Moreover, the modification in the barrier characteristics, such as interaction barrier and interaction radius, is observed with the variation in the radius parameter of decaying fragments and influences the penetrability and fission cross-sections. Finally, the fission cross-sections are calculated for considered choices of nuclear radii, and the results are compared with the available experimental data.

Downloads

Download data is not yet available.

References

D. Kumar and M. Maiti, Physical Review C 96, 044624 (2017). https://doi.org/10.1103/PhysRevC.96.044624

R. Prajapat and M. Maiti, Physical Review C 101, 064620 (2020). https://doi.org/10.1103/PhysRevC.101.064620

A. Kaur and M. K. Sharma, Physical Review C 99, 044611 (2019). https://doi.org/10.1103/PhysRevC.99.044611

P. Jisha et al., Physical Review C 101, 024611 (2020). https://doi.org/10.1103/PhysRevC.101.024611

C. M. Castaneda, H. A. Smith, Jr., P. P. Singh and H. Karwowski, Physical Review C 21, 179 (1980). https://doi.org/10.1103/PhysRevC.21.179

A. R. Barnett and J. S. Lilley, Phys. Rev. C 9, 2010 (1974). https://doi.org/10.1103/PhysRevC.9.2010

R. K. Gupta, M. Balasubramaniam, R. Kumar, N. Singh, M. Manhas and W. Greiner, Journal of Physics G: Nuclear and Particle Physics 31, 631 (2005). https://doi.org/10.1088/0954-3899/31/7/009

B. B. Singh, M. K. Sharma and R. K. Gupta, Physical Review C 77, 054613 (2008). https://doi.org/10.1103/PhysRevC.77.054613

M. K. Sharma, S. Kanwar, G. Sawhney, R. K. Gupta and W. Greiner, Journal of Physics G: Nuclear and Particle Physics 38, 055104 (2011). https://doi.org/10.1088/0954-3899/38/5/055104

M. K. Sharma, G. Sawhney, R. K. Gupta and W. Greiner, Journal of Physics G: Nuclear and Particle Physics 38, 105101 (2011). https://doi.org/10.1088/0954-3899/38/10/105101

J. Maruhn and W. Greiner, Physical Review Letters 32, 548 (1974). https://doi.org/10.1103/PhysRevLett.32.548

R. K. Gupta, W. Scheid and W. Greiner, Physical Review Letters 35, 353 (1975). https://doi.org/10.1103/PhysRevLett.35.353

B. B. Singh, M. K. Sharma and R. K. Gupta, Physical Review C 77, 054613 (2008). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.77.054613

J. Blocki, J. Randrup, W. J. Swiatecki and C. F. Tsang, Annals of Physics 105, 427 (1977). https://doi.org/10.1016/0003-4916(77)90249-4

R. Bass, Physical Review Letters 39, 265 (1977). https://doi.org/10.1103/PhysRevLett.39.265

P. R. Christensen and A. Winther, Physics Letters B 65, 19 (1976). https://doi.org/10.1016/0370-2693(76)90524-4

A. Winther, Nuclear Physics A 594, 203 (1995). https://doi.org/10.1016/0375-9474(95)00374-A

Downloads

Published

2021-08-31

Issue

Section

Articles