T-dependent RMF Model Applied to Ternary Fission Studies





Ternary fission, Pre-existence probability, Relative yield, Excitation energy


Ternary decay is comparatively a rare phenomenon. The yield distribution for the thermal neutroninduced fission of 236U was investigated within the Temperature-dependent Relativistic Mean Field (TRMF) approach and statistical theory. Binding energy obtained from TRMF for the ground state and at a specific temperature is used to evaluate the fragment excitation energy, which is needed to calculate the nuclear level density. Using the ternary convolution, the yield for α-accompanied fission of 236U* is calculated. Initial results are presented which shows a maximum yield for the fragment pair Tc + Ag +α. Further, the ternary pre-existence probability for the spontaneous fission of 236U was studied considering fixed third fragments of α,10Be and 14C using the area of the overlapping region. No significant change in the yield distribution was observed when fragment deformations are considered. However, the heavy group for the probable pair remains as 132Sn with a change in mass number of the lighter fragment. 


Download data is not yet available.


G. Farwell, E. Segrè and C. Wiegand, Phys. Rev. 71, 327 (1947). https://doi.org/10.1103/PhysRev.71.327

Tsien San-Tsiang, Ho Zah-Wei, L. Vigneron and R. Chastel, Nature 159, 773 (1947). https://doi.org/10.1038/159773a0

M. Asghar et al., Nucl. Phys. A 145, 657 (1970). https://doi.org/10.1016/0375-9474(70)90446-X

G. Kugler and W. B. Clarke, Phys. Rev. C 5, 551 (1971). https://doi.org/10.1103/PhysRevC.5.551

C. Wagemans, P. D’hondt, P. Schillebeeckx and R. Brissot, Phys. Rev. C 33, 943 (1986). https://doi.org/10.1103/PhysRevC.33.943

J. K. Hwang, Phys. Rev. C 61, 047601 (2000). https://doi.org/10.1103/PhysRevC.61.047601

K. Manimaran and M. Balasubramaniam, Phys. Rev. C. 79, 024610 (2009). https://doi.org/10.1103/PhysRevC.79.024610

K. Manimaran and M. Balasubramaniam, J. Phys. G: Nucl. Part. Phys. 37, 045104 (2010). https://doi.org/10.1088/0954-3899/37/4/045104

K. Manimaran and M. Balasubramaniam, Eur. Phys. J. A 45, 293 (2010). https://doi.org/10.1140/epja/i2010-11000-7

K. Manimaran and M. Balasubramaniam, Phys. Rev. C 83, 034609 (2011). https://doi.org/10.1103/PhysRevC.83.034609

K. R. Vijayaraghavan, M. Balasubramaniam and W. von Oertzen, Phys. Rev. C 90, 024601 (2014). https://doi.org/10.1103/PhysRevC.90.024601

C. Kokila and M. Balasubramaniam, Phys. Rev. C 100, 034607 (2019). https://doi.org/10.1103/PhysRevC.100.034607

C. Karthika and M. Balasubramaniam, Eur. Phys. J. A 55, 59 (2019). https://doi.org/10.1140/epja/i2019-12729-y

M. Wang et al., Chin. Phys. C 41, 030003 (2017). https://doi.org/10.1088/1674-1137/41/3/030003

C. Kokila and M. Balasubramaniam, Phys. Rev. C 101, 014614 (2020). https://doi.org/10.1103/PhysRevC.101.014614

V. Yu. Denisov and N. A. Pilipenko, Phys. Rev. C 76, 014602 (2007). https://doi.org/10.1103/PhysRevC.76.014602

V. Yu. Denisov, N. A. Pilipenko and I. Y. Sedykh, Phys. Rev. C 95, 014605 (2017). https://doi.org/10.1103/PhysRevC.95.014605

J. Błocki, J. Randrup, W. Swiatecki and C. F. Tsang, Ann. Phys. (NY) 105, 427 (1977). https://doi.org/10.1016/0003-4916(77)90249-4

Y. K. Gambhir, P. Ring and A. Thimet, Ann. Phys. 198, 132 (1990). https://doi.org/10.1016/0003-4916(90)90330-Q

S. K. Patra and C. R. Praharaj, Phys. Rev. C 44, 2552 (1991). https://doi.org/10.1103/PhysRevC.44.2552

P. Fong, Phys. Rev. C 2, 735 (1970). https://doi.org/10.1103/PhysRevC.2.735

A. J. Cole, Fundamental and Applied Nuclear Physics Series – Statistical models for nuclear decay from evaporation to vaporization, edited by R. R. Betts and W. Greiner (Institute of Physics Publishing, Bristol and Philadelphia, 2000).


M. T. Senthil Kannan and M. Balasubramaniam, Eur. Phys. J. A 53, 164 (2017). https://doi.org/10.1140/epja/i2017-12355-9

R. K. Gupta, W. Scheid and W. Greiner, J. Phys. G: Nucl. Part. Phys. 17, 1731 (1991). https://doi.org/10.1088/0954-3899/17/11/018

W. Greiner and R. K. Gupta, Heavy Elements and Related New Phenomena (World Scientific, Singapore, 1999). https://www.worldscientific.com/worldscibooks/10.1142/3664

D. N. Poenaru and W. Greiner, Phys. Scr. 44, 427 (1991). https://doi.org/10.1088/0031-8949/44/5/004

N. S. Rajeswari, K. R. Vijayaraghavan and M. Balasubramaniam, Eur. Phys. J. A 47, 126 (2011). https://doi.org/10.1140/epja/i2011-11126-0

K. Manimaran, Ph. D. thesis, Department of Physics, Bharathiar University (2011).

C. Kokila and M. Balasubramaniam, J. Phys. G: Nucl. Part. Phys. 48, 025102 (2021). https://doi.org/10.1088/1361-6471/abcb5a

M. Balasubramaniam, C. Karthikraj, S. Selvaraj and N. Arunachalam, Phys. Rev. C 90, 054611 (2014). https://doi.org/10.1103/PhysRevC.90.054611

M. T. Senthil Kannan, Bharat Kumar, M. Balasubramaniam, B. K. Agrawal and S. K. Patra, Phys. Rev. C 95, 064613 (2017). https://doi.org/10.1103/PhysRevC.95.064613




How to Cite

Kokila, C.; Karthika, C.; Balasubramaniam, M. T-Dependent RMF Model Applied to Ternary Fission Studies. J. Nucl. Phy. Mat. Sci. Rad. A. 2021, 9, 95-101.