Enhanced Fission Probability of Even-Z Fragments in the Decay of Hot and Rotating 210Rn* Compound System

Authors

DOI:

https://doi.org/10.15415/jnp.2021.91008

Keywords:

Compound nucleus, Heavy-ions reactions, Mass and Charge distribution of the cross-section and odd-even staggering, Isotopes, Fission, Mass, Shell, Cross section, Fragments, Nucleus

Abstract

Mass and charge distribution of the cross-section for the fission fragments obtained in the decay of hot and rotating compound system formed in the reaction 48Ca + 162Dy → 210Rn* at an incident energy 139.6 MeV has been calculated using the dynamical cluster-decay model. Isotopic composition for each element belonging to the symmetric mass region has been obtained. The shell closure at N=50 for light and at Z=50 for heavy mass binary fragments gives a deep minima in the fragmentation potential at touching configuration and governs the fission partition of the compound system. The fission fragments of the symmetric mass region have their dominating presence along with strong odd-even staggering i.e., even-Z fission fragments are more probable than the odd ones, similar to the observed trends of the yield.

Downloads

Download data is not yet available.

References

E. M. Kozulin, M. G. Itkis and G. N. Knyazheva, J. Phys.: Conf. Ser. 282, 012008 (2011). https://doi.org/10.1088/1742-6596/282/1/012008

A. N. Andreyev, K. Nishio and K.-H. Schmidt, Rep. Progr. Phys. 81, 016301 (2018). https://doi.org/10.1088/1361-6633/aa82eb

P. Möller, J. Randrup, A. Iwamoto and T. Ichikawa, Phys. Rev. C 90, 014601 (2014). https://doi.org/10.1103/PhysRevC.90.014601

J. P. Blocki, H. Feldmeier and W. J. Swiatecki, Nucl. Phys. A 459, 145 (1986). https://doi.org/10.1016/0375-9474(86)90061-8

D. S. Verma, Nucl. Phy. A 1003, 122031 (2020). https://doi.org/10.1016/j.nuclphysa.2020.122031

R. K. Gupta et al., Phy. Rev. C 71, 014601 (2005). https://doi.org/10.1103/PhysRevC.71.014601

R. K. Gupta et al, J. Phys. G. Nucl. Part. Phy. 32, 345 (2006). https://doi.org/10.1088/0954-3899/32/3/009

D. S. Verma and Kushmakshi, Nucl. Phy. A 995, 121690 (2020). https://doi.org/10.1016/j.nuclphysa.2019.121690

H. Kroger and W. Scheid, J. Phy. G, Nucl. Phy. 6, L85 (1980). https://doi.org/10.1088/0305-4616/6/4/006

N. J. Davidson et al., Nucl. Phy. A 570, 61 (1994). https://doi.org/10.1016/0375-9474(94)90269-0

D. S. Verma and Kushmakshi, J. Radioanal. Nucl. Chem. 322, 139 (2019). https://doi.org/10.1007/s10967-019-06497-7

W. D. Myers and W. J. Swiatecki, Nucl. Phy. 81, 1 (1966). https://doi.org/10.1016/0029-5582(66)90639-0

J. Blocki, J. Randrup, W. J. Swiatecki and C. F. Tsang, Ann. Phys. 105, 427 (1977). https://doi.org/10.1016/0003-4916(77)90249-4

Downloads

Published

2021-08-31

Issue

Section

Articles