Impact of Nuclear Deformation on Neutron Dripline Prediction: A Study of Mg Isotopes

Authors

DOI:

https://doi.org/10.15415/jnp.2021.91004

Keywords:

Relativistic Hartree-Bogoliubov, Quadrupole deformation, Shape coexistence, Dripline nuclei

Abstract

We have employed the relativistic Hartree-Bogoliubov (RHB) model with density-dependent meson-exchange interaction and separable pairing to investigate neutron dripline mechanisms for heavy Mg isotopes. In the present study, 40Mg is predicted to be dripline nuclei. The calculations are carried out by taking axial deformation into account. An investigation of shape transition is also done for even-even 32-42Mg isotopes. Our prediction for neutron dripline for 40Mg is consistent with some recent studies.

Downloads

Download data is not yet available.

References

A. V. Afanasjev, S. E. Agbemava, D. Ray, and P. Ring, Phys. Rev. C 91, 014324 (1992). https://doi.org/10.1103/PhysRevC.91.014324

L. Neufcourt et al., Phys. Rev. Lett. 122, 062502 (2019). https://doi.org/10.1103/PhysRevLett.122.062502

N. Tsunoda et al., Nature 587, 66 (2020). https://doi.org/10.1038/s41586-020-2848-x

J. Erler et al., Nature 486, 509 (2012). https://doi.org/10.1038/nature11188

T. Baumann, et al., Nature 449, 1022 (2007). https://doi.org/10.1038/nature06213

H. L. Crawford et al., Phys. Rev. Lett 122, 052501 (2014). https://doi.org/10.1103/PhysRevLett.122.052501

Q. Chai, J. Pei, N. Fei, and D. Guan, Phys. Rev. C 102, 014312 (2020). https://link.aps.org/doi/10.1103/PhysRevC.102.014312

V. Thakur and S. K. Dhiman, Nucl. Phys. A 992, 121623 (2019). https://doi.Org/10.1016/j.nuclphysa.2019.121623

V. Thakur Nuet et al., Nucl. Phys. A 1002, 121981 (2020). https://doi.Org/10.1016/j.nuclphysa.2020.121981

P. Kumar and S. K. Dhiman, Nucl. Phys. A 1001, 121935 (2020). https://doi.Org/10.1016/j.nuclphysa.2020.121935

P. Kumar et al., Eur. Phys. J. A 57, 36 (2021). https://doi.org/10.1140/epja/s10050-021-00346-6

T. Niksic, N. Paar, D. Vretenar and P. Ring, Computer Physics Communications 185, 1808 (2014). https://doi.Org/10.1016/j.cpc.2014.02.027

M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003). https://doi.org/10.1103/RevModPhys.75.121

G. Lalazissis, T. Niksic, D. Vretenar, and P. Ring, Phys. Rev. C 71, 024312 (2005). https://doi.org/10.1103/PhysRevC.71.024312

S. Typel and H. H. Wolter, Nucl. Phys. A 656, 331 (1999). https://doi.org/10.1016/S0375-9474(99)00310-3

F. Hofmann, C. Keil, and H. Lenske, Phys. Rev. C 64, 034314 (2001). https://doi.org/10.1103/PhysRevC.64.034314

T. Niksic, D. Vretenar, P. Finelli, and P. Ring, Phys. Rev. C 66, 024306 (2002). https://doi.org/10.1103/PhysRevC.66.024306

F. De Jong and H. Lenske, Phys. Rev. C 57, 3099 (1998). https://doi.org/10.1103/PhysRevC.57.3099

Y. Tian, Z.-Y. Ma, and P. Ring, Phys. Lett. B 676, 44 (2009). https://doi.org/10.1016/j.physletb.2009.04.067

T. Niksic, P. Ring, D. Vretenar, Y. Tian, and Z.-Y. Ma, Phys. Rev. C 81, 054318 (2010). https://doi.org/10.1103/PhysRevC.81.054318

Y. Tian, Z.-Y. Ma, and P. Ring, Phys. Rev. C 79, 064301 (2009). https://doi.org/10.1103/PhysRevC.79.064301

Downloads

Published

2021-08-31

Issue

Section

Articles