Heavy Particle Accompanied Fission of 284Og - A Statistical Model Study

Authors

  • S. Subramanian Department of Physics, V. O. Chidambaram College, Thoothukudi, Tamil Nadu-628008, India https://orcid.org/0000-0003-4960-8976
  • S. Selvaraj Department of Physics, The Madurai Diraviyam Thayumanavar Hindu College, Tirunelveli, Tamil Nadu-627010, India

DOI:

https://doi.org/10.15415/jnp.2021.91003

Keywords:

Superheavy nuclei, Ternary fission, Statistical theory, Level density, Single particle energy, Relative yield

Abstract

The structural characteristics of SHN can be investigated through the decay of SHN. In the present work ternary fission of SHN 284Og for two proton magic fixed third fragment 48Ca and 68Ni is studied at three different excitation energies 20, 35 and 50 MeV. Interestingly, 169Yb + 67Ni + 48Ca is having larger yield values and hence it is the most favoured way of fragmentation at intermediate excitation energy 35 MeV. It is observed that, asymmetric fission is favoured over symmetric fission at all the excitation for the third fragment 48Ca. Asymmetric fission is the most favoured with the fragment combination 148Sm + 68Ni + 68Ni for fixed A3 = 68Ni at all the excitations. Unlike the Ca third fragment, near symmetric fission is also favoured with 113Ag + 103Tc + 68Ni for A3 = 68Ni at all the three excitation energies.

Downloads

Download data is not yet available.

References

S. Hofmann and G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000). https://doi.org/10.1103/RevModPhys.72.733

Y.T. Oganessian et al., Phys. Rev. C. 64, 054606 (2001). https://doi.org/10.1103/PhysRevC.64.054606

Y.T. Oganessian et al., Phys. Rev. C. 74, 044602 (2006). https:///doi.org/10.1103/PhysRevC.74.044602

P. Armbruster Ann. Rev. Nucl. Part. Sci. 35, 135 (1985). https://doi.org/10.1146/annurev.ns.35.120185.001031

G. Munzenberg Rep. Progr. Phys. 51, 57 (1988). https://doi.org/10.1088/0034-4885/51/1/002

Yu.A. Lazarev et al. Phys. Rev. Lett. 73, 624 (1994). https://doi.org/10.1103/PhysRevLett.73.624

Yu.A. Lazarev et al. Phys. Rev. Lett. 75, 1903 (1995). https://doi.org/10.1103/PhysRevLett.75.1903

P. Armbruster et al. Phys. Rev. Lett. 54, 406 (1985). https://doi.org/10.1103/PhysRevLett.54.406

Yu. Oganessian et al. Phys. Rev. Lett. 83, 3154 (1999). https://doi.org/10.1103/PhysRevLett.83.3154

Yu. Oganessian et al. Nature 400, 242 (1999). https://doi.org/10.1038/22281

S. Subramanian, M. T. Senthil Kannan, and S. Selvaraj, Braz J Phys 51, 136 (2021). https://doi.org/10.1007/s13538-020-00812-4

P. Fong, Phys. Rev. 102, 434 (1956). https://doi.org/10.1103/PhysRev.102.434

M. Rajasekaran and V. Devanatahan, Phy Rev C 24, 2606 (1981). https://doi.org/10.1103/PhysRevC.24.2606

J. Maruhn and W. Greiner, Phys. Rev. Lett. 32, 548 (1974). https://doi.org/10.1103/PhysRevLett.32.548

A.R. Degheidy and J.A. Maruhn, Z. Phys. A 290, 205 (1979). https://doi.org/10.1007/BF01408116

A. J. Cole, in Fundamental and Applied Nuclear Physics Series - Statistical models for nuclear decay from evaporation to vaporization, edited by R. R. Betts and W. Greiner, Institute of Physics Publsihing, Bristol and Philadelphia (2000).

H. Bethe, Rev. Mod. Phys. 9, 69 (1937). https://doi.org/10.1103/RevModPhys.9.69

M. Balasubramaniam, C. Karthikraj, S. Selvaraj and N. Arunachalam Phy Rev C 90, 054611 (2014). https://doi.org/10.1103/PhysRevC.90.054611

Y.V. Pyatkov et al., Eur. Phys. J. A 45, 29 (2010). https://doi.org/10.1140/epja/i2010-10988-8

Y.V. Pyatkov et al., Eur. Phys. J. A 48, 94 (2012). https://doi.org/10.1140/epja/i2012-12094-5

D.V. Kamanin and Y.V. Pyatkov, in Clusters in Nuclei, edited by C. Beck, Volume 3. Lecture Notes in Physics, vol 875. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-01077-9_6

https://www-nds.iaea.org/RIPL-3/

P. Moller, W.D. Myers, W.J. Swiatecki and J. Treiner, At. Data Nucl. Data Tables 39, 225 (1988). https://doi.org/10.1016/0092-640X(88)90023-X

Downloads

Published

2021-08-31

Issue

Section

Articles