Signal of h → µτ, ττ in ν2HDM⊕S3

Authors

  • E. Barradas Guevara Faculty of Physical Mathematical Sciences, Meritorious Autonomous University of Puebla (BUAP), PO Box 1152, Puebla 72000, Mexico
  • F. Cazarez-Bush Institute of Mathematics, National Autonomous University of Mexico (UNAM), PO Box 139-B 6219, 04510 Mexico City. Mexico
  • O. Felix Beltran 5Faculty of Electronics Sciences, Meritorious Autonomous University of Puebla (BUAP), PO Box 542, Puebla 72000, Mexico
  • F. Gonzalez-Canales Institute of Mathematics, National Autonomous University of Mexico (UNAM), PO Box 139-B 6219, 04510 Mexico City. Mexico

DOI:

https://doi.org/10.15415/jnp.2018.61004

Keywords:

Leptons, Seesaw mechanism, flavour symmetry, 2HDM-III

Abstract

Nowadays in particle physics, the exploration of the flavor physics through the Higgs boson phenomenology is one of the main goals in the field. In particular we are interested in the Lepton Flavour Violation (LFV) processes. In this work, we explore the processes h → µτ, ττ in the theoretical framework of a flavored extension of the Standard Model, which has two Higgs fields and the horizontal permutation symmetry S3 imposed in the Yukawa sector, this extension is called v2HDM⊗S3.We obtain the couplings Φµτ, ττ as well as Br(h → µτ) in function of the model parameters in function of the model parameters, which are constricted by means the experimental results of  ΦMS → µτ reported in the literature

Downloads

Download data is not yet available.

References

G. Aad, et al. (ATLAS Collaboration). Phys. Lett. B, 716, 1–29, (2012). https://doi.org/10.1016/j.physletb.2012.08.020

Chatrchyan, et al. (CMS Collaboration). Phys. Lett. B, 16, 30–61, (2012). https://doi.org/10.1016/j.physletb.2012.08.021

F. Capozzia, E. Lisic , A. Marroned, D. Montaninoe, A. Palazzod, Nuclear Physics B 908, 218–234, (2016). https://doi.org/10.1016/j.nuclphysb.2016.02.016

A. Gando, et al. (KamLAND). Phys. Rev. D, 83, 052002 (2011). https://doi.org/10.1103/PhysRevD.83.052002

A. Gando, et al. (KamLAND). Phys. Rev. D, 88, 033001 (2013). https://doi.org/10.1103/PhysRevD.88.033001

J. H. Choi, et al. (RENO). Phys. Rev. Lett. 116, 211801 (2016) https://doi.org/10.1103/PhysRevLett.116.211801

S. H. Seo, (RENO). Proceedings, 26th International Conference on Neutrino Physics and Astrophysics (Neutrino 2014), AIP Conf. Proc. 1666, 080002 (2015).

Y. Abe, et al. (Double Chooz). JHEP, 10, 086 (2014) [Erratum: JHEP02,074(2015)].

F. P. An, et al. (Daya Bay). Phys. Rev. Lett., 116, 061801 (2015). https://doi.org/10.1103/PhysRevLett.116.061801

T. Asaka, et al. Phys. Lett. B, 620, 17–26 (2005). https://doi.org/10.1016/j.physletb.2005.06.020

A. G. Beda, et al. (GEMMA Collaboration). Adv. High Energy Phys., vol. 2012, 350150 (2012).

Felix-Beltran, et al. Phys. Lett. B, 742, 347–352 (2015). https://doi.org/10.1016/j.physletb.2015.02.003

D. Atwood, L. Reina, and A. Soni, Phys. Rev. D, 55, 3156–3176 (1997). https://doi.org/10.1103/PhysRevD.55.3156

M. Krawczyk, and D. Sokolowska, International Linear Collider Workshop (LCWS07 and ILC07) Hamburg, Germany, May 30-June 3, 2007, eConf C0705302, p. HIG09 (2007), [141(2007)].

M. Krawczyk, Proceedings Europhysics Conference on High Energy Physics (EPS-HEP 2005). PoS HEP2005, 335 (2006).

F. F. Deppisch, Fortsch. Phys., 61, 622–644 (2013). https://doi.org/10.1002/prop.201200126

I. Dorsner, and S. M. Barr. Phys. Rev. D, 65, 095004 (2002). https://doi.org/10.1103/PhysRevD.65.095004

F .Gonzalez Canales, et al. Fortsch. Phys., 61, 546–570 (2013). https://doi.org/10.1002/prop.201200121

E. Barradas-Guevara, et al. Phys. Rev. D, 97, no. 3, 035003 (2018). https://doi.org/10.1103/PhysRevD.97.035003

G. Aad, et al. (ATLAS Collaboration). JHEP 211 (2015).

Downloads

Published

2018-08-06

How to Cite

(1)
Guevara, E. B. .; Cazarez-Bush, F. .; Beltran, O. F. .; Gonzalez-Canales, F. . Signal of H → µτ, ττ in ν2HDM⊕S3. J. Nucl. Phy. Mat. Sci. Rad. A. 2018, 6, 23-26.

Issue

Section

Articles

Similar Articles

You may also start an advanced similarity search for this article.